105/2015 [Additional Exam] chemistry P-I VCD 08 05 25 CHEMISTRY P-I S.Y.B.Sc SEM-IV MARKS 75 TIME 2.5HRS & COO - TV

NOTE: i) All the questions are compulsory.

- ii) Figures to right indicate full marks.
- iii) Use of non-programmable calculator / log table is allowed.

Q.1. Attempt any four:

[20]

- A) What is number of components? Explain it with suitable examples.
- B) What are ideal and non-ideal solutions? What are the conditions for the solution to be ideal?
- C) Discuss the variation of mutual solubility for Water + Phenol system.
- D) The vapour pressure of pure benzene and toluene at 320 K is 3.2 X 10⁴ Nm⁻² and 1.02 X 10⁴Nm⁻² respectively. Calculate the vapour pressure of solution containing one mole of benzene and 2.5 mole of toluene if solution obeys Raoults law.
- E) State the Gibb's phase rule and explain meaning of terms involved.
- F) Explain principle and instrumentation of steam distillation.
- G) State and explain Nernst distribution law and give its limitations.
- H) Explain positive and negative deviation from Raoult's law.

Q.2. Attempt any four:

[20]

- A) a) State Nernst equation & explain the terms involved in it.
 - b) What is salt-bridge? Give its two functions.
- B) Write down the total cell reaction for the following cells.
 - a) $Ag_{(s)} | Ag^{+} | Fe^{2+} | Fe_{(s)}$
 - b) Pt, H_{2(g)} | HCl | Cl_{2(g)}, Pt
 - c) $Zn_{(s)} |Zn^{2+}|| Cu^{2+}|| Cu_{(s)}$
 - d) $Pb_{(s)} | Pb^{2+} | | Ag^{+} | Ag_{(s)}$
 - e) $Al_{(s)} | Al^{3+} || Fe^{2+} | Fe$
- C) Explain the classification of electrodes with example.
- D) Describe the construction & working of Daniel cell with a suitable example.
- E) Explain Henderson's equation for acidic buffer solution.
- F) a) Derive the relationship between pH & pOH.
 - b) What is buffer solution? Give its types.
- G) Define the following terms
 - a) Buffer action b) Electrolysis c) Electrolytic cell
 - d) pH e) pOH
- H) Calculate E°_{cell} and E_{cell} of the following cell

(0.1) (0.05) Given that $E^{o}_{Fe/Fe}^{2+} = -0.441 \text{ V} \& E^{o}_{Cd/Cd}^{2+} = -0.403 \text{ V}.$

CHEMISTRY P-I S.Y.B.Sc SEM-IV MARKS 75 TIME 2.5HRS

Q.3. Attempt any four:

[20]

- A) Explain the Ostwald's theory of Acid-base indicator.
- B) Explain the principle of photometric titration. Give its advantages & limitations.
- C) Explain the conductometric titration of strong acid against strong base.
- D) Explain the principle of potentiometric titration and give its advantages & limitations.
- E) a) Define titrant and titrand.
 - b) What are the requirements fulfill the criteria of titrimetic analysis?
- F) Explain the classification of titrimetric analysis.
- G) Discuss advantages & limitations of conductometric titration.
- H) Explain the terms
 - a) Titration b) Equivalence point c) End point
 - d) Titration error e) Indicator

Q.4. Attempt any three:

[15]

- A) State and explain Raoult's law.
- B) Solve the problems.
 - a) Liquid A (Mol. Wt. 46) and liquid B (Mol. Wt. 18) form an ideal solution. At 20° C, the vapour pressure of pure liquid A and pure liquid B are 5.865×10^{4} Nm⁻² and 2.333×10^{3} Nm⁻² respectively. Calculate the vapour pressure of the solution of A in B containing 0.2 mole fraction of A.
 - b) A solution of two liquids A and B exhibits ideal behavior. The mole fraction of A is 0.4. The vapour pressure of pure component A is 0.5 bar and that of B is 0.3 bar. Calculate the partial vapour pressure of A and B in solution.
- C) Explain the curves in photometric titration.
- D) Explain the conductometric titration of mixture of strong and weak acids against weak base.
- E) Write a note on Standard Hydrogen electrode
- F) Distinguish between
 - a) Reversible and irreversible cell b) Primary cell and secondary cell
