Physics I

Time: 2hr 30 min

Marks: 75

Note- *All the questions are compulsory.

*Non programmable calculator is allowed.

*Number indicates on right indicate full marks.

Q.1A]Attempt any one of the following:

i)Derive an expression for work -energy theorem.

ii)State and explain Newton's laws of motion

Q.1B] Attempt any two of the following: {5 Marks each}

i)State laws of friction.

ii) Explain Non-Inertial frame of reference.

iii) The coefficient of static friction between the blocks of mass 4kg and the table (shown in figure) is $\mu_s = 0.4$. What should be the maximum value of 'm' so that the blocks do not move? The string and the pulley are light and smooth.

iv) Write a short note on mass energy equivalence.

Q.2A]tempt any one of the following: [10]

- i) Derive a relation between the young's modulus, bulk modulus and poisson's ratio of the substance.
- ii) State and prove Bernoulli's theorem.

Q.2B] Attempt any two of the following: {5 Marks each}

[10]

- i) Define Poisson's ratio. Show that the theoretical limiting values of Poisson's ratio are -1 and 0.5.
- ii) State and explain Stoke's law. What are its applications?
- iii) A venturimeter consists of a pipe of diameter 36cm and a throat diameter of 20cm. Estimate the rate of flow of water in m³/sec; if the water pressure in the pipe is 60000 pa and in the throat is 40000 pa [Given : density of water = 1000 Kg/m³].
- iv) For a steel material, $Y = 2 \times 10^{11} \text{ N/m}^2$ and bulk modulus is 13.3 $\times 10^{10} \text{ N/m}^2$, calculate Poisson's ratio and modulus of rigidity of steel.

Q.3A]tempt any one of the following:

[10]

- i)Prove that foe a real gases $C_p C_v = [(\frac{\partial U}{\partial v})_T + p](\frac{\partial V}{\partial T})_p$
- ii) Explain the concept of work. Derive the expression for work done in Adiabatic process.

Q.3 B] Attempt any two of the following: {5 Marks each}

110

- i) A perfect gas system at 2 atm pressure and 27°C temperature is adiabatically compressed to 1 atm pressure. Calculate the resulting temperature. (r=1.4)
- ii) 2 moles of an ideal gas expands isothermally and reversibly from 20L to 30L at 300K. Find the work done. (R=8.314 J/K.mol)
- iii) Distinguish between ideal and real gases.
- iv) State and explain the Zero'th laws of thermodynamics

Q.4] Attempt any three of the following: {5 Marks each}

[15]

- i) Give advantage and disadvantage of friction.
- ii) A ball a dropped from a height reaches the ground with speed of \sqrt{gh} . Calculate the work done by air friction.
- iii) Define Stress, Strain and Poisson's ratio also write their units and dimensions.
- iv) Derive equation of continuity.
- v) One mole of gas obeying Van der waals equation at 0°C occupies 550cm³ of volume. calculate the pressure exerted by it. a= 0.37 Nm⁴mol⁻², b= 43x10⁻⁶ m³ mol⁻¹R=8.31JK⁻¹mol⁻¹
- vi) 1 moles of a perfect gas expands isothermally at 127°C till its volume is doubled. Calculate the work done by the gas and heat absorbed by it. R=8.3 J/moleK.

(125)