Q.P.Code: 12086

(3 Hours) [Total Marks: 100

- N.B.: 1. All questions are compulsory.
 - 2. Figures to the right indicate full marks.
- Q.1 Choose correct alternative in each of the following:

(20)

- i. Multiplicative inverse of a real number
 - (a) Exists and is unique
 - (b) Does not exist
 - (c) If exists then is unique
 - (d) None of these
- ii. If A = (2, 5] then
 - (a) $Inf A \in A$
- (b) $Inf A \in A$, $sup A \in A$
- (c) $Sup A \in A$
- (d) None of these
- iii. If 0 < x < 1 then
 - (a) $x^2 > x$
- (b) $x^2 > 1$
- (c) $x^2 < x$
- (d) None of these
- iv. The sequence (x_n) where $x_n = n^3$, $\forall n \in \mathbb{N}$ is
 - (a) Convergent (b) Bounded
- - (c) Divergent
- (d) None of these
- v. Every constant sequence in \mathbb{R} is

 - (a) Convergent (b) Bounded but not convergent
- (c) Never Cauchy (d) None of these
- $\lim_{x \to -1} \frac{3x^2 5x 8}{x + 1}$ equals
 - (a) -11
- (b) 11

(c) 2

- (d) None of these
- $\lim_{x \to \infty} \frac{8x^2 5x + 4}{4x^2 + 1}$ equals
 - (a) 2

(b) 4

(c) 0

- (d) None of these
- viii. If (x_n) of real numbers satisfies, $\frac{1}{n} \le x_n \le \frac{1}{\sqrt{n}}$, $\forall n \in \mathbb{N}$ then (x_n)
 - (a) Converges to 0
- (b) Diverges
- (c) Converges to 1 (d) None of these

[P.T.O.]

The inequality $|x+y| \le |x| + |y|, \forall x, y \in \mathbb{R}$ is (a) AM-GM inequality (b) Cauchy Schwarz inequality Triangle inequality (d) None of these The function $f(x) = e^x$ is continuous (a) Only if x > 0(b) Only if x < 0For each $x \in \mathbb{R}$ (c) (d) None of these (08)Q.2a) Attempt any ONE question from the following: State any four properties of \mathbb{R} under addition. Further prove that additive inverse of a real number is unique. If $x, y \in \mathbb{R}$ such that x < y, then prove that there exists $r \in \mathbb{Q}$ such that x < r < y. b) Attempt any TWO questions from the following: (12)Prove the following: For $x \in \mathbb{R}$ and r > 0, |x| < r if and only if -r < x < r. Let A be any non-empty, bounded above subset of \mathbb{R} . Let k > 0. Prove that $\sup(kA) = k \sup A$. iii. Show that if $x \in \mathbb{R}$ then there exists $n \in \mathbb{N}$ such that x < n. iv. State and prove Hausdorff property of \mathbb{R} . Q.3Attempt any ONE question from the following: (08)Let (x_n) and (y_n) be two sequences converging to p and qrespectively. Prove that (x_n+y_n) converges to p+q and (cx_n) converges to cp where $c \in \mathbb{R}$. Prove that every Cauchy sequence of real numbers is convergent. b) Attempt any TWO questions from the following: (12)Let $x_n = b^n$, $\forall n \in \mathbb{N}$ where 0 < b < 1. Show that (x_n) converges to 0. Let $x_n = 3 - \frac{2}{n}$, $\forall n \in \mathbb{N}$. Show that (x_n) is monotonic increasing and bounded above. Is (x_n) convergent?

- iii. Prove that every convergent sequence of real numbers is bounded.
- Show that the sequence $\left(\cos\frac{n\pi}{2}\right)$ is divergent.
- Q.4 Attempt any ONE question from the following: (08)
 - State and prove Sandwich theorem for limit of a function.
 - Let $f, g: \mathbb{R} \to \mathbb{R}$ be two functions and let $a \in \mathbb{R}$. If $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$, then prove that $\lim_{x \to a} (5f + 6g)(x) = 5l + 6m, \text{ using } \epsilon - \delta \text{ definition.}$
 - Attempt any TWO questions from the following: (12)
 - Prove that f(x) = 2x + 12 is continuous at x = 2, using i. $\epsilon - \delta$ definition.
 - ii. Draw graph of a function $f(x) = \log_e x$ for $x \in (0, \infty)$.
 - iii. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and let $l \in \mathbb{R}$. Give definition of $\lim_{x \to \infty} f(x) = l \text{ and also find } \lim_{x \to \infty} \frac{x^4 - 5}{2x^4 + 3}.$ iv. Let $f: \mathbb{R} \to \mathbb{R}$ be a function and $a \in \mathbb{R}$. Prove that
 - $\lim_{x \to a} |f(x)| = 0 \text{ if and only if } \lim_{x \to a} f(x) = 0.$
- Q.5 Attempt any FOUR questions from the following: (20)
 - If A, B are non-empty, bounded subsets of \mathbb{R} , then show that the set $A \cap B$ is bounded.
 - b) State and prove the Arithmetic-Geometric Mean inequality for $a, b \in \mathbb{R}$.
 - c) Give an example of two divergent sequences (x_n) and (y_n) such that their product $(x_n y_n)$ is convergent.
 - d) State and prove Sandwich theorem for sequences of real numbers.
 - e) Discuss the continuity of the following function at x = 4.8

where
$$f(x) = \begin{cases} 5x + 12 & \text{if } x < 4 \\ 3x - 2 & \text{if } 4 \le x < 8 \\ 2x + 6 & \text{if } x \ge 8 \end{cases}$$

f) Prove that $f(x) = \begin{cases} -2 & \text{if } x \in \mathbb{Q} \\ 2 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ is discontinuous at

- - x = 2 by using sequential definition of continuity. *******