PHYSICS-I

VCD 12 1015F.Y. B.Sc. PHYSICS-I I-SEMESTER 2015-16 75 MARKS 2.30 HRS

Note: i) All the questions are compulsory.

- ii) Figures to the right indicate full marks.
- iii) Use of non-programmable calculator is allowed.

Q.1) A) Attempt any one. [8M]

a) If A = i-2j-3k, B=2i+j-k & C = i+3j-2k.

Find (i) | (A X B) X C| (ii) (A X B) X (BX C) (iii) (A X B) .C (iv) |A X (B X C) |

b) If $A=2yz i-x^2yj+xz^2k$, $B=x^2i+yzj-xyk & Ø = 2x^2yz^3$.

Find (i) (A. ∇) \emptyset (ii) A. ∇ \emptyset (iii) (B. ∇).A (iv) (A X ∇) \emptyset .

Q.1) B) Attempt any one. [7M]

- a) Find $\nabla X A$ at point (1,-1,1). If $A = xz^3 i 2x^2 y z j + 2yz^4 k$.
- b) Show that the addition of vectors is associative. i.e. A + (B+C) = (A+B) + C.

Q.1) C) Attempt any one, [5M]

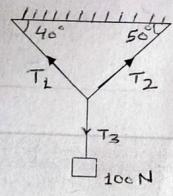
- a) If A = 2i + 7j + 2k and B = 3i j + -2k, find (i) A.B (ii) |A.B| (iii) (2A+3B)
- b) Prove that $\nabla (F.G) = G \nabla F + F \nabla G$

Q2 A) Attempt any one. [7M]

- a) Solve the equation is exact and hence find its solution. $(x^2 + \ln y) dx + \frac{x}{y} dy = 0$
- b) Solve the equation $\frac{dy}{dx} + \frac{2}{x}y = \frac{x^2}{2}$

Q2 B) Attempt any one. [8M]

- a) The emf equation for the charging of a capacitor circuit is R(dq/dt)+q/c=E


 Derive the expression for the charge on the capacitor. The initial charge on capacitor is zero.
- b) A body starts from rest and tall under gravity in a resistive medium. If we assume that the resistive force is proportional to the velocity its equation of motion is $(\frac{dv}{dt})$ +bv = g. Solve the equation for v.

Q2 C) Attempt any one. [5M]

- a) Show that $y=e^x+e^{2x}$ is a solution of $\frac{d^2y}{dx^2}-3\frac{dy}{dx}+2y=0$
- b) $\ln y = -x (\ln x 1)$ is solution of $\frac{dy}{dx} + \ln x^y = 0$

Q3) A) Attempt any one [8M]

- a) Derive Bernoulli's equation, What principle is it based? Is it equation applicable for a real liquid flow?
- b) A weight of 100N hangs from a string tied to the two other strings attached to a fixed support as shown in figure below. The two strings make angles of 40° and 50° with the horizontal. Find the tensions in all three strings.

Q3) B) Attempt any one. [7M]

- a) For a homogeneous isotopic material show that $\sigma = \frac{3K-2\eta}{6K+2\eta}$.
- b) The velocity above and below the wings of an airplane are v_1 and v_2 respectively and A is the area of the wings show that the upward force is $\frac{1}{2}$ A $(v_1^2 v_2^2)\rho$, Where ρ is the density of air.

Q3) C) Attempt any one [5M]

- a) A thin metal plate of 10 cm² in area rests on a layer of oil 2mm thick A force of 0.01N applied to the plate horizontally keep it moving with a uniform speed of 1cm/find the viscosity of the oil.
- b) For a steel material, Y=2x10¹¹ N/m² and Bulk modulus is 13 3x10¹⁰ N/m², calculate Poisson's ratio and modulus of rigidity of steel.

Q.4) Attempt any three. [15M]

- a) (i) define scalar & vector.
 - (ii)Classify the following in scalar & vectors.

Charge, Kinetic Energy, Entropy, Frequency, Force, Magnetic field.

- b) Prove that $(y^2-z^2+3yz) \hat{\imath} + (3xz+2xy) \hat{\jmath} + (3xz+2xz+2z) \hat{k}$ is solenoid.
- c) Show that the function F(x,y), $F(x,y) = x^4 + 3x^2y + xy^2$ dF is a perfect differential?
- d) Solve the equation $\frac{d^2y}{dx^2} + w^2y = 0$
- e) Determine the force per unit area required to compress a volume of water by one percent. (Bulk modulus of water is 5x10¹⁰ dynes/cm²)
- f) A thin metal plate of 20 cm² in area rests on a layer of oil 3mm thick A force of 0.01N applied to the plate horizontally keep it moving with a uniform speed of 2cm/s. Find the viscosity of the oil.