- NOTE: 1) All questions are compulsory.
 - 2) For Q.1, Q.2 and Q. 3 attempt any one subquestion (each 8 marks) from part (a), and any three subquestions (each 4 marks) from part (b).
 - 3) For Q.4, attempt any three (each 5)
- Q.1. (a) Attempt any one. [each 8]
 - 1) For $a, b, c \in IR$ prove the following
 - i) $a < b \implies -a > -b$
 - ii) $a < b \Rightarrow a + c < b + c$
 - iii) $a > b \& c < 0 \Rightarrow a < c$
 - iv) $a > b \& c > 0 \implies ac < bc$
 - 2) State all properties of addition of IR = set of real numbers.
 - (b) Attempt any three. [each 4]
 - 1) Find LUB and GLB of $S = \{ \frac{1}{n} / n \in IN \}$

LUB= Least Upper Bound

GLB = Greatest Lower Bound

- 2) State and prove AM GM inequality of IR.
- State and prove Hausdorff property of neighbourhood.
- 4) Prove that if a_n is convergent sequence then it is bounded.
- Q.2. (a) Attempt any one. [each 8]
 - 1) State and prove Sandwhich theorem for sequence.
 - 2) State all algebraic properties of sequences.
 - (b) Attempt any three. [each 4]
 - 1) Prove that i) if $a_n \to a \& \alpha \in IR$ then $\alpha. a_n \to \alpha a$.
 - 2) Prove that if $a_n \neq 0$ for any $n \in IN$ then $a_n \to a \Rightarrow \frac{1}{a_n} \to \frac{1}{a}$.
 - 3) Show that $a_n \to a$ then $|a_n| \to |a|$.
 - 4) Define monotonic increasing and decreasing sequence and give example

- (a) Attempt any one. [each 8]
 - Let f,g be real valued function defined on subset $J\subseteq IR$ and $\lim_{x\to a}f(x)=l$, $\lim_{x\to a}g(x)=m$ then prove that $\lim_{x\to a}f(x)\cdot g(x)=l$. m.
 - 2) Let $f: I \to IR$ be a function where I is an open interval in IR. Let $a \in I$ then prove that $\lim_{x \to a} f(x)$ exist iff $\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x)$
- Q.3. (b) Attempt any three. [each 4]
 - 1) Define the following functions and draw the graphs
 - i) Constant function
 - ii) Flooring function |x|
 - Define right hand and left hand limits and evaluate right hand left hand limits of f as $\lim_{x\to 3} f(x)$ in following case

$$f(x) = x - 3$$
 $if(x - 3) \ge 0$
= $-(x - 3)$ $if(x - 3) < 0$ $p = 3$

- Let $f, g: J \to IR$ be continuous at $P \in J$ where J is an open interval in IR then prove that $f + g: J \to IR$ is continuous at P.
- 4) Give $\epsilon \delta$ definition of limit of f at P and show that $\lim_{x \to 4} (2x + 3) = 11$.
- Q.4. Attempt any three. [each 5]
 - Show that $f: IR \to IR$ defined by $f(x) = c \ \forall \ x \in IR$, c is constant is continuous everywhere.
 - 2) Let f be real valued defined on subset $I \subseteq IR$. Let $P \in I$, if $\lim_{x \to P} f(x)$ exists then prove that it is unique.
 - 3) Prove that $\lim_{n\to\infty} \frac{a_n}{n!} = 0 \quad \forall a \in IR.$
 - 4) Prove that $x \in IR^+$ then $\exists m \in IN$ such that $0 < \frac{1}{m} < x$.
 - 5) Examine whether the following sequences are monotonic

i)
$$a_n = \frac{4}{n+1}$$
 ii) $a_n = \frac{4+3n}{n}$

Prove that if a_n & b_n are two convergent sequences having limits a and b respectively then prove that $(a_n + b_n)$ converges and $\lim_{n \to \infty} (a_n + b_n) = a + b$.

