Note: (i) All questions are compulsory.

(ii) Use of Calculator is allowed.

Q.1) Answer the following questions

a) Correct the following if necessary:

(10M)

- i. M.G.F. uniquely determines the distribution.
- ii. Binomial distribution is always unimodal.
- iii. All Cumulants are unequal in case of Poisson distribution.
- iv. Hypergeometric distribution has 2 parameters.
- v. If E(Y/X) = E(Y) then X and Y are independent.
- b) Answer in One sentence:

(10M)

- i. Write down p.m.f. of discrete uniform variate over the range {1,2,...,n} and also state its mean and variance.
- ii. If the moment generating function is given by $M_X(t) = [0.55 + 0.45e^t]^{10}$. Write down its probability mass function and mean.
- iii. Write down the p.m.f of poison variable and write the expression for mean of poission distribution.
- iv. Derive the expression for M.G.F. of Geometric Distribution.
- v. Define conditional probability density of X for given values of Y.

Q.2) Attempt any TWO

(20M)

a) (1) If X is a r.v. with M.G.F. $M_X(t)$. Then prove that

07

- (i) M.G.F. of Y = X+b is $M_Y(t) = e^{bt}M_X(t)$
- (ii) M.G.F. of Y = aX+b is $M_Y(t) = e^{bt} M_X(at)$
- (iii) If X and Y are two independent variables with their respective M.G.F. $M_X(t)$

and $M_Y(t)$, then M.G.F. of X+Y is $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

- (iv) $M_X(0) = 1$
- (2) If r.v. X has p.d.f.

03

$$f(x) = \frac{1}{4}$$
 ; -2< x <2

= 0 ; otherwise

P.7.O.

Show that its M.G.F. is given by

$$M_X(t) = \frac{e^{2t} - e^{-2t}}{4t}$$
, t\neq 0

b) If r.v. X has p.m.f.

$$P(X=x) = \frac{x}{10}$$
 ; x=1,2,3,4
=0 ; otherwise

Obtain its M.G.F. Find E(X) and V(X). State M.G.F. of Y=5X-3. Find E(Y).

c) If a random variable X follows Bernoulli Distribution with probability p.

Obtain expression for its moment generating function. Hence evaluate its mean, variance and measure of skewness.

Q.3) Attempt any TWO

(20M)

- a) (i) State and prove the Memory Loss Property for Geometric Distribution with parameter p.
 - (ii) If a random variable X follows Poisson distribution if P(X = 5) = P(X = 4)Then find SD and mode.
- b) Prove that the sum of two independent Poisson variates is a Poisson variate while the difference is not a Poisson variate.
- c) Evaluate the mean and variance using M.G.F. for Geometric function.

Q.4) Attempt any TWO

(20M)

- a) Define marginal and conditional probability mass function .derive conditional probability mass function
- b) (i) State and prove additional theorem on Expectation of two discrete random variables.
 - (ii) Multiplication theorem on Expectation of two discrete random variables.

P.T.O.

VCD/OSIO 22SYB.Sc SEM-III STATISTICS- I 100 MARKS 3 HRS

c) For the following joint p.m.f of X, Y

$X \downarrow Y$	1	2	3
0	0.02	0.08	0.10
1	0.03	0.12	0.15
2	0.05	0.20	0.25

- (i) Examine whether X and Y are independent?
- (ii) Find $P[X+Y \le 3]$

Q.5) Attempt any TWO

(20M)

- a) (i) With usual notations, if $\varphi_X(t) = (2 e^{it})^{-1}$. Write its M.G.F. Find E(X) and V(X)..
 - (ii) For a binomial variate mean is 6 and variance is 4, find (1)P(X = 1) (2)P(X > 2)
- b) The number of monthly breakdown of a computer is a random variable having Poisson distribution with mean 1.8. Find the probability that this computer will work for a month
 - i) with only one defective
 - ii) with at least 2 defective
- c) If X and Y are two discrete random variables with E(X) = 10, V(X) = 20, V(Y) = 16 and Cov(X,Y) = 2 Obtain: (i) E(4X + 2Y + 5), (ii) V(3X + 2Y), (iii) V(4X Y + 2), (iv) Cov(2X + 1, 3Y + 2).