Time: 2.30 Hours

[Total Marks: 75]

N.I	B. :(1	l) All	I questions are compulsory.	300			
	(2	2) Fig	gures to the right indicate full marks.				
	(3	3) Dr	aw neat diagrams wherever necessary.				
	(5	5) Sy	mbols have usual meaning unless otherwise stated.				
	(5	5) Us	se of non-programmable calculator is allowed.				
1.	(a)	Attempt any one:					
		(i)	Discuss the construction and working of an n – channel enhancement type MOSFET. Draw and explain its drain characteristics and transconductance curve.	10			
		(ii)	Explain the construction and working of SCR. Explain the working of half wave rectifier using SCR as a rectifying device. Derive an expression for its DC output current and voltage.	10			
	(b)	Atte	empt any one:				
		(i)	Explain the voltage divider bias of a JFET. State and explain condition under which the drain current in a voltage divider is approximately constant for any JFET.	5			
		(ii)	An n-channel JFET has $I_{DSS} = 10 \text{mA}$. and $V_{GS(off)} = -4 \text{V}$. Calculate the gate source voltage and drain current at the half cut off point.	5			
2.	(a)	Attempt any one:					
	` '	(i)	Draw a neat circuit diagram of a transistorized monostable multivilbrator. With the help of necessary waveforms, explain its working and how it is used for pulse shaping.	10			
		(ii)	With the help neat circuit diagram, explain the working of series voltage feedback regulator. Derive an expression for its output voltage and power dissipation.	10			
	(b) Attempt any one:						
465		(i)	Define and explain following terms with respect to differential amplifier, tail current, input bias current, input offset current, output offset voltage and input offset voltage	5			
		(ii)	Explain with the help of neat circuit diagrams common mode gain. Derive an expression for common mode voltage gain using emitter coupled differential amplifier.	5			
3.	(a)	Atte	mpt any one:				
		(i)	Draw the circuit diagram of astable multivibrator using op-amp. Discuss its working. Derive the expression for time period of output square wave. Sketch the waveform across capacitor and at output terminal.	10			
		(ii)	Draw the schematic diagram of IC 555 connected as free running oscillator. Discuss its working with necessary waveforms. Derive expression for duty cycle.	10			
V 39	300	3000	Page 1 of 3				

	(b)	Attempt any one:				
		(i)	What is voltage controlled oscillator? Draw the circuit diagram of voltage controlled oscillator using IC 555. Explain its working.	375		
		(ii)	Draw the circuit diagram of Wein bridge oscillator using op-amp.	5		
		(11)	Calculate the oscillating frequency of Wein bridge using R_1 =2K Ω ,			
			R ₂ =5K Ω , C ₁ =0.02 μ F and C ₂ =0.02 μ F.			
4.	(a)	Attempt any one:				
		(i)	Draw neat diagram of two inputs TTL NOR gate and explain its working. Write its truth table.	10		
		(ii)	Explain frequency modulation with neat diagram. What are the advantages of frequency modulation over amplitude modulation?	10		
	(b)	Attempt any one:				
		(i)	Explain the working of transistorized AM modulator with neat circuit diagram.	5		
		(ii)	Draw a logic diagram of decade counter that counts in a straight binary sequence. Write its truth table.	5		
5.	(a)	Attempt any one:				
		(i)	An n-channel JFET has a gate current of 1 nA when the reverse gate voltage is 20V. What is the input resistance of the JFET? What is its ohmic resistance if $V_p = 4V$ and $I_{DSS} = 10$ mA.	4		
		(ii)	An SCR has a current fusing rating of 70A ² S. Determine the highest surge current value that SCR can withstand for a period of 20 msec.	4		
	(b)	Atte	mpt any one:			
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	(0)	(i)	The differential amplifier with double ended input and single ended output circuit using discrete components has $V_{CC} = 15 \text{ V}$, $V_{EE} = -15 \text{ V}$, $R_C = 20 \text{ K}\Omega$, $R_E = 20 \text{ K}\Omega$, If $V_{BE} = 0.7 \text{ V}$ for silicon transistor and $V_1 = V_2 = 0 \text{ V}$.	4		
			What is the dc emitter current in each silicon transistor? Find tail current			
	300		and dc voltage at the output.			
		(ii)	Schmitt trigger circuit using discrete components has V_{CC} =12 V, $V_{CE(SAT.)}$ = 0.2V, V_{BE} = 0.6 V, R_{C1} = 10 K Ω , R_{C2} = 20 K Ω and R_{E} = 4.7 K Ω . Find the values of switching levels and hysteresis voltage.	4		
	(c)	Attempt any one:				
		(i)	A first order active high pass filter in non-inverting configuration, uses	4		
	S S S	66	R=2K Ω , C=0.05 μ F, R _i =1K Ω and R _F =3K Ω . Calculate cut-off frequency.			
	A CO	N P C	Also calculate pass band gain.			
		(ii)	A monostable multivibrator is constructed using IC 555 and R=10K Ω . The output pulse width is 10ms. Calculate capacitance C. What will be pulse width if C is doubled?	4		

- (d) Attempt any one:---
 - (i) How many flip flops are required to construct each of the following counters? a) mod-3 b) mod-8 c) mod-16
 - (ii) A carrier with an amplitude 140 V is modulated by a signal with an amplitude of 80 V. What is the percentage modulation and amplitude of lower sideband frequency?

3
