Q.P. Code: 51729

 $(2^{1}/_{2} \text{ Hours})$ [Total Marks: 75]

- N. B. : (1) All questions are compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Draw neat diagrams wherever necessary.
 - (4) Symbols have usual meaning unless otherwise stated.
 - (5) Use of log table and non-programmable calculator is allowed.
- 1. (a) Attempt any one:---
 - (i) Derive the equation of motion of a particle of mass 'm' under the action of central force and reduce the problem to one dimensional problem using the effective potential energy of the particle.
 - (ii) A starred coordinate system rotates relative to an unstarred system fixed in space. Both systems have common origin. Prove that

$$\frac{d^{2} \vec{A}}{dt^{2}} = \frac{d^{2} \vec{A}}{dt^{2}} + \vec{\omega} \times (\vec{\omega} \times \vec{A}) + 2\vec{\omega} \times \frac{d^{2} \vec{A}}{dt} + \frac{d^{2} \vec{\omega}}{dt} \times \vec{A}$$

Interpret the various terms in the equation.

- (b) Attempt any one:---
 - (i) State Kepler's laws of planetary motion. Show that each planet describes an ellipse with the sun at one focus
 - (ii) A body is dropped from rest from a height of 50 m. Calculate the deviation from the vertical suffered by the body, due to Coriolis force, when it reaches the surface of the earth.

 Letingle of place (0% N = 0.08 m/s²)
- Latitude of place = 60° N, g = 9.8 m/s²
- 2. (a) Attempt any one:---
 - (i) State the D'Alembert's principle and derive an expression for Lagrange's equation with one degree of freedom.
 - (ii) What are ignorable coordinates? Show that if the Lagrangian function of a system does not depend explicitly on time the total energy of the system is conserved.
 - (b) Attempt any one:---
 - (i) What are generalised co-ordinates? Explain the statement 'More the constraints imposed on the system lesser the number of generalized coordinates describing the system.
 - (ii) Show that momentum conjugate to a cyclic coordinate is conserved. Give an example.
- 3. (a) Attempt any one:---
 - Show $\frac{d}{dt}(\delta V) = (\nabla \cdot \vec{v})\delta V$ for a fluid element. Hence derive the equation of continuity for the motion of continuous matter.

Q.P. Code: 51729

5

5

4

4

(ii) A symmetric top spinning about the axis of symmetry inclined to the vertical by an angle θ has its lower tip fixed. Its K.E. is given by:

$$T = \frac{1}{2}I_1(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{1}{2}I_3(\dot{\psi} + \dot{\phi}\cos \theta)^2$$

Show that the top will precess without nutations if the spin $\omega_3 \ge \frac{2}{I_3} \sqrt{mglI_1 \cos \theta_0}$.

- (b) Attempt any one:---
 - (i) If the total external force includes the body force and external force on volume V due to the pressure exerted by surrounding fluid on it and the total external force acting on the fluid volume V of the fluid is zero, show that its linear momentum is constant.
 - (ii) Show that the kinetic energy of a rigid body is given by $T = \frac{1}{2}\vec{\omega} \cdot \vec{L}$
- 4. (a) Attempt any one:---
 - (i) The potential energy of a one dimensional damped anharmonic oscillator is given by $V(x) = K\left(\frac{x^2}{2} + \frac{\alpha x^4}{4}\right)$, where K is the spring constant and α is anharmonic coefficient. Discuss the potential energy curve for various combinations of K and α . Comment on confinement of motion.
 - (ii) State Duffing's equation for a driven damped anharmonic oscillator. Discuss the features of the numerical solution of the Duffing's equation for the two cases
 - 1) $\gamma = 0.1$ and f = 0.5 2) $\gamma = 0.1$ and f = 3.
 - (b) Attempt any one:---
 - (i) Find Hausdorf dimension of Cantor Set.
 - (ii) Show that in Logistic map for $\lambda = 0.6$, the fixed point x = 0 is an attractor.
- 5. (a) Attempt any one:---
 - (i) If a body of mass 500 gm is moving with a velocity of 200 m/s, estimate the maximum Coriolis force experienced by the body.
 - (ii) Halley's comet has a period of revolution T = 76 years around the sun.
 Determine the semi major axis of its orbit in AU.
 (1 AU = 1.5 × 10⁸ km (sun to earth distance))
 G = 6.67× 10⁻¹¹ Nm²/kg², Mass of the sun = 2.0 × 10³⁰ kg
- 5. (b) Attempt any one:---
 - (i) For a particle moving in a plane, write down the Lagrange's equation of motion in polar coordinates.
 - (ii) Set up Lagrangian for a simple pendulum and obtain equation describing its motion.
- 5. (c) Attempt any one:---
 - (i) Water is flowing out of a pipe of non-uniform cross section at a steady rate. The area of cross section at the two points A and B of the tube are 0.0314m² and 0.0628m² respectively. The pressure difference between A and B is 9800N/m². Density of water is 1000kg/m³. Find the rate of flow of water through the pipe.

Q.P. Code: 51729

- (ii) OX, OY and OZ are the principal axes of a rigid body, at fixed point O. If $I_x = I_y$ and $\vec{\omega}$ is in XY plane, show that the angular momentum about O is parallel to $\vec{\omega}$.
- 5. (d) Attempt any one:---
 - (i) Calculate the fixed point for the quadratic maps drawn for $\lambda = 0.3$ and $\lambda = 3$
 - (ii) With the help of Butterfly effect define chaos.

_____<u>&</u>