$(2^{1}/_{2} \text{ Hours})$  Total Marks: 75

- **N.B.**: (1) **All** questions are **compulsory**.
  - (2) **Figures** to the **right** indicate **full** marks.
  - (3) Draw **neat** diagrams wherever **necessary**.
  - (5) Symbols have usual meaning unless otherwise stated.
  - (5) Use of **non-programmable** calculator is allowed.

## **List of Constants:**

Charge of an electron:  $e = 1.6021 \times 10^{-19}$  Coulomb

Mass of an electron:  $m = 9.109 \times 10^{-31} \text{ Kg}$ 

Boltzmann constant:  $K = 1.3805 \times 10^{-23}$  Joule/ Kelvin

Plank's constant:  $h = 6.626 \times 10^{-34}$  Joule-sec

Permeability of free space:  $\mu_0 = 4\pi \times 10^{-7}$  Henry/meter

Avogadro's number:  $N_A = 6.023 \times 10^{26}$  /Kmole

- 1. (a) Attempt any one:---
  - (i) Describe the types of cubic crystal (SC) structures with neat diagram.

    Find the distance between the nearest neighbours and atomic packing factor of FCC system.
  - (ii) Derive the expression for drift velocity of free electrons in metals. 10 What are the drawbacks of classical theory for metals?
  - (b) Attempt any one:---
    - (i) Define the terms: Coordination number, unit cell, basis, crystal structure and single crystal.
    - (ii) Copper has fcc structure and its atomic radius is 0.1278 nm. 5 Calculate its density. Take the atomic weight of copper as 63.5.
- 2. (a) Attempt any one:---
  - (i) Explain the Brillouin zones in one dimension and two dimensions with neat diagram. How are they related to the energy levels of an electron in a metal?
  - (ii) Derive the expression for density of energy states in metals. 10

10

5

- (b) Attempt any one:---
  - (i) Derive the expression for the mean energy of electron gas at absolute zero temperature.
  - (ii) Show that the probability that a state  $\Delta E$  above the Fermi level  $E_F$  is filled equals the probability that a state  $\Delta E$  below  $E_F$  is empty.

53652 Page **1** of **3** 

| 3. | (a)   | Attempt any one:                                                                                                                                        | £ / 5                      |
|----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|    |       | (i) Derive the expression for Fermi level and electron concentration in                                                                                 | <b>10</b>                  |
|    |       | n-type of semiconductor.                                                                                                                                |                            |
|    |       | (ii) Apply the continuity equation to find the expression for injected                                                                                  | 10                         |
|    |       | minority carrier concentration in a bar of semiconductor subjected to                                                                                   |                            |
|    |       | radiation at one end as a function of distance under the state of equilibrium.                                                                          | Z Z Z                      |
|    | (b)   | Attempt any one:                                                                                                                                        |                            |
|    | (0)   | (i) Derive the expression for barrier potential at an open circuited P-N                                                                                | 5                          |
|    |       | junction in terms of dopping concentrations by using its energy band structure.                                                                         |                            |
|    |       | (ii) In an intrinsic semiconductor with forbidden energy gap $E_g$ = 0.7 eV, determine the position of Fermi level at T= 300 K if $m_h^*$ = 6 $m_e^*$ . | 5.<br>5.<br>7.<br>7.<br>7. |
| 4. | (a)   | Attempt any one:                                                                                                                                        |                            |
|    |       | (i) Write down expression for reverse saturation current I <sub>0</sub> of a PN-diode and discuss it for Ge and Si diodes. Derive the relation for      | 10                         |
|    |       | temperature co-efficient of $I_0$ which is defined as $(1/I_0)(dI_0/dT)$ .                                                                              |                            |
|    |       | (ii) What is diamagnetism? Derive the expression for the diamagnetic susceptibility of a substance.                                                     | 10                         |
|    | (b)   | Attempt any one:                                                                                                                                        |                            |
|    |       | (i) Explain the Meissner effect in superconductors.                                                                                                     | 5                          |
|    |       | (ii) A Ge PN junction has reverse saturation current $I_0=1~\mu A$ at 37°C.                                                                             | 5                          |
|    |       | Find its static and dynamic resistance for an applied bias of 0.3 V at 37°C.                                                                            |                            |
|    |       |                                                                                                                                                         |                            |
| 5. | (a) ( | Attempt any one:                                                                                                                                        |                            |
|    | AD.   | (i) Draw the lattice planes (110), (231), (101) and (123).                                                                                              | 4                          |
|    |       | (ii) Show that for simple cubic lattice $d_{100}$ : $d_{110}$ : $d_{111} = \sqrt{6}$ : $\sqrt{3}$ : $\sqrt{2}$                                          | 4                          |
|    | (b)   | Attempt any one:                                                                                                                                        |                            |
|    |       | (i) Calculate the total number of energy states below $E = 5  eV$ in a metal of volume $10^{-5}  m^3$ . Assume the electrons to be free.                | 4                          |
|    |       | (ii) Estimate the electronic specific heat of copper at $300K$ . $E_F$ for copper is $7 \text{ eV}$ .                                                   | 4                          |

53652 Page **2** of **3** 

## (c) Attempt any one:---

- (i) The Hall voltage for sodium metal is 0.001 mV measured at I=100 mA,  $B_z=2$  Weber/  $m^2$ . Thickness of specimen is 0.05 mm. Calculate the number of carriers per cubic meter in sodium.
- (ii) A germanium diode has  $10^{22}$  donor atoms/m<sup>3</sup> in the n-region and  $2\times10^{21}$  acceptor atoms/m<sup>3</sup> in the p-region. Find the value of barrier potential developed across the unbiased junction at room temperature. Intrinsic carrier concentration (n<sub>i</sub>) for germanium is 2.15  $\times 10^{19}$ /m<sup>3</sup>.

## (d) Attempt any one:---

- (i) A superconducting material has critical temperature of 4.5K in zero magnetic field and critical field of 0.04 Wb/m<sup>2</sup> at 0 K. Find critical field at temperature 3 K.
- (ii) A magnetic material has magnetization of 3300 A/m and flux density of 0.0044 Wb/m<sup>2</sup>. Calculate the magnetizing force.

53652 Page **3** of **3**