Q.P. Code:-20135

10

2:30 Hours

[Total Marks: 75]

N.B. : (1) All questions are compulsory.

- (2) Figures to the right indicate full marks.
- (3) Draw neat diagrams wherever necessary.
- (5) Symbols have usual meaning unless otherwise stated.
- (5) Use of non-programmable calculator is allowed.

1. (a) Attempt any one:---

- (i) Find the potential inside and outside a uniformly charged solid sphere whose radius is R and total charge is q, use infinity as your reference point. Compute the gradient of V in each region and check that it yields the correct field. Sketch V(r).
- (ii) A grounded conducting plane of infinite extent is kept coinciding with X-Y plane, a point charge q is placed at a distance 'd' above the plane along Z axis using method of images obtain:
 - 1) The position and the magnitude of image charge.
 - 2) Electrostatic potential at any point above the conducting plane and electrostatic field at any point on the conducting plane.
- (b) Attempt any one:---
 - (i) Define Electric flux. State Gauss law in electrostatics. What are the merits and demerits of Gauss law?
 - (ii) The electric field in some region is found to be $\overline{E} = kr^3\hat{r}$ where k is a constant, find the charge density ρ

2. (a) Attempt any one:---

- (i) Explain the term 'Polarization'; obtain the expression for potential due to polarized object in terms of bound charge densities.
- (ii) Starting from Biot-Savart's law obtain the expression for $\nabla \times \overline{B}$ and $\nabla \cdot \overline{B}$

(b) Attempt any one:---

- (i) Explain what is meant by linear homogeneous and isotropic dielectric. 5 Obtain the expression $k = 1 + \chi_n$
- (ii) A vector field in vacuum is given by; $2y\hat{i} + 3z\hat{j} + 4x\hat{k}$; check if it can represent magnetic field, if yes then find the associated current density

3. (a) Attempt any one:---

(i) Explain the terms – Magnetic susceptibility and permeability. Describe in brief the deceptive parallel between the equations i) $\nabla \times \overline{H} = \overline{J}_f$ and ii) $\nabla \times \overline{B} = \mu_0 \overline{J}$

Page 1 of 3

A long copper rod of radius 'R' carries a uniformly distributed free current

'I' find \overline{H} inside and outside the rod.

4

(ii)

3

(d) Attempt any one:---

(i) Dielectric constant of diamond is 5.5, if the permeability of diamond (μ_d) is same as the permeability of free space (μ_0) i.e. $\mu_0 = \mu_d$. Find the refractive index of diamond.

(ii) If R is the reflection coefficient and T is the transmission coefficient then show that R+T=1
