QP Code: 77044

(2½ Hours)

[Total Marks: 75

- N. B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Draw neat diagrams wherever necessary.
 - (4) Symbols have their usual meaning unless otherwise stated.
 - (5) Use of log-table and nonprogrammable calculator is allowed.
- 1. (a) Attempt any one.

10

- (i) Write the Schrodinger equation for hydrogen atom in spherical polar coordinates. Using the method of separation of variables get the three differential equations for R, Θ and Φ . State the different quantum numbers and their permissible values.
- (ii) Solve the Schrodinger equation for simple harmonic oscillator using operator method. Define the raising and lowering operator and hence get the lowest eigenfunction.
- (b) Attempt any one.

5

(i) Show that

$$\Theta_{20} = \frac{\sqrt{10}}{4} (3\cos^2 \theta - 1)$$

is the solution of the equation,

$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}\Theta_{lm_l}}{\mathrm{d}\theta} \right) + \left[l(l+1) - \frac{m_l^2}{\sin \theta} \right] \Theta_{lm_l} = 0$$

(ii) Show that the eigenvalue of the operator L^2 is $l(l+1)\hbar^2$, when operated on hydrogen atom wavefunction.

Given:

$$\mathbf{L}^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$

2. (a) Attempt any one.

10

(i) Discuss LS coupling for two electron atom in detail. Find spectroscopic terms for an atom having s electron and p electron.

[TURN OVER

- (ii) Show, quantum mechanically, that an electron undergoing a transition from energy level E_m to a lower energy level E_n emits a radiation of frequency $v = \frac{E_m E_n}{h}$
- (b) Attempt any one.

5

- (i) Define symmetric and antisymmetric wavefunctions. Explain, why antisymmetric wavefunction obeys Pauli's exclusion principle.
- (ii) Calculate angle between vectors J and L in ${}^{2}P_{1/2}$ state.
- 3. (a) Attempt any one.

10

- (i) What is Normal Zeeman Effect? Give quantum mechanical explanation of Normal Zeeman Effect.
- (ii) What is Paschen-Back effect? Illustrate Paschen-Back effect considering a Principal series doublet.
- (b) Attempt any one.

5

- (i) Draw vector atom model diagram showing relative orientations of vectors- S, L, J, μ_L , μ_S and μ_J .
- (ii) What is anomalous Zeeman effect? Draw vector model diagram to represent it.
- 4. (a) Attempt any one.

10

- (i) State Franck-Condon principle. Using the principle, discuss the intensity pattern of electronic bands.
- (ii) What is Raman effect? Explain it using the polarizability of molecules.
- (b) Attempt any one.

5

- (i) Write a short note on vibration-rotation spectrum of a diatomic molecule.
- (ii) In a CO molecule, the bond length is 1.13×10^{-10} m and the masses of C and O atoms are 1.99×10^{-26} kg and 2.66×10^{-26} kg respectively. Calculate the energy of the lowest rotational level.

[TURN OVER

5. (a) Attempt any one.

- 1
- (i) Normalise the wavefunction $\Phi = Ae^{im_l\phi}$ and hence find the value of A.
- (ii) The natural frequency of CO molecule is 2×10^{13} Hz. Calculate the zero point energy, $h = 6.63 \times 10^{-34}$ Js.

(b) Attempt any one.

4

- (i) State Hund's rule and show that $\frac{16}{8}$ O has two unpaired electrons.
- (ii) A beam of electrons enters a uniform magnetic field $1.8~\text{wb/m}^2$. Find the energy difference between the electrons whose spins are parallel and antiparallel to the field. Given: $\mu_B = 9.27 \times 10^{-24}$ joule/(wb/m²)

(c) Attempt any one.

4

- (i) A sample of certain element is placed in a magnetic field of 0.3 wb/m². How far apart are the normal Zeeman components of a spectral line of wavelength 4500 angstrom? Given: $e/m = 1.76 \times 10^{11}$ C/kg. $c = 3 \times 10^{8}$ m/s.
- (ii) Show that the Lande's g-factor has a value 1.5 when L = S.Illustrate it by giving two suitable examples along with their term symbols.

(d) Attempt any one.

3

- (i) When a radiation of frequency 549.5×10^{12} Hz was scattered by a medium, the Raman spectrum showed a radiation of frequency 557.4×10^{12} Hz. Is it Stoke's line or antistoke's line? Determine the wavelength of Stoke's line. $c = 3 \times 10^8$ m/s.
- (ii) Homonuclear diatomic molecules do not exhibit vibrational and rotational spectra but they exhibit Raman spectra. Explain.