r-t-BSC

Subject: Physics PI Mathematical and Stutiscal Physics. 2016-17

QP Code: 77032

(2½ Hours)

[Total Marks : 75

N. B.: (1) All questions are compulsory.

- (2) Figures to the right indicate full murks.
- (3) Use of non-programmable calculators and log-tables is allowed.
- (4) Draw neat diagrams wherever necessary.

1. (A) Attempt any one:-

- (i) Discuss the method of solving the second order homogeneous linear ordinary differential equations with the constant coefficients.
- (ii) (a) Solve $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = xe^x$. 10
 - (b) Solve $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = 2\cos x.$

(B) Attempt any one:-

(i) Solve
$$\frac{\partial^2 z(x,y)}{\partial x \partial y} = x^2 y$$

5

5

10

10

Subject to the condition
$$z(x, 0) = x^2$$
 and $z(l, y) = \cos y$

(ii) Test the following equation for exactness and find its solution. $x(x^2 + 2y^2) dx + y(2x^2 + y^2) dy = 0$

2. (A) Attempt any one

- (i) State cosine and sine transform pairs. Find the fourier sine and cosine transform of a function: $f(x) = e^{-ax}$
- (ii) Expand f(x) = x in the interval $-\pi \le x \le \pi$ in a Fourier series 10 and show that

$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin nx}{n}$$

Also show the graphical representation in the interval and outside the interval.

TURN OVER

KS-Con. 3449-16.

3

- (A) Attempt any one :-
- 5.72AT 019120169:55:31 A (i) The equation of motion of a body falling under gravity in a resistive medium is

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} + \mathbf{b}\mathbf{v} = \mathbf{g}$$

solve this equation for v if the body starts from rest.

- (ii) Solve $\frac{dN(t)}{dt} = -\lambda N(t)$ by using the method of separation of variables.
- (B) Attempt any one :-
 - (i) State Dirichlet's theorem. Explain the Dirichlet's conditions.
 - (ii) Get the Fourier transforms of first order and second order derivatives of a function f(x).
- (C) Attempt any one :-
 - (i) Energy difference between two particle states in a system is 3.2×10^{-21} J. Calculate temperature of the system when ratio of the probabilities of the two states is e2.
 - (ii) Consider a system of eight spin half particles fixed in uniform magnetic field B. If μ_0 is the magnetic moment associated with each particle, find the various possible macrostates of the system and statistical weight of each macrostate. Which will be the most probable macrostate? Explain.
- (D) Attempt any one :-
 - (i) Calculate thermodynamic probability of the most probable distribution and least probable distribution of 1000 identical particles among 200 identical cells.
 - (ii) An enclosure of volume 100 cc is filled with black body radiation. Calculate the number of modes of vibration in the wavelength range 4000 AU to 4005 AU.

4

4

3

3