Time: 3Hrs	Marks:-100	
(2) F (3) U	All questions are compulsory. Figures to the right indicate maximum marks. Use of non-programmable calculators is permitted. Symbols used have their usual meaning	
Q1. A)	Select correct answer The momentum operator in one dimension is a) $-i\hbar \frac{d}{dx}$ b) $i\hbar \frac{d}{dx}$ c) $i\hbar \frac{d}{dt}$ d) $-i\hbar \frac{d}{dt}$	(12)
2	Which of the following is not a physical requirement for a wave function to be valid a) Single valued b) continuous in given region c) time independent d) None of these.	
3	A particle is confined in a cubical box. The degeneracy of the energy state E, if E = $14 \frac{h^2}{8mL^2}$ is a) 6 b) 3 c) 9 d) 14	
4	A particle of energy E approaches a potential step of height V, greater than E. According to quantum mechanics the particle is a) always reflected c) may be reflected or transmitted d) None of these	
5	α-particles are emitted from the nucleus by tunneling b) bombardment c) emission d) fission	
6	Diatomic molecule is an example of a) harmonic oscillator b) simple oscillator c) damped oscillator d) multiple oscillator	
B) 1 2 3	Answer in one sentence Give the statement of equation of continuity in classical mechanics with its usual meaning What is tunnel effect? What is energy of a simple harmonic oscillator in the lowest state known as?	(3)
C)	Fill in the Blanks $ \Psi ^2 =$	(5)
2 3 4	is the normalized condition for three dimensional wave function Ψ The probability of finding the particle in classically forbidden region is called If particle is restricted to a limited region by external forces so that it moves back and forth in that region only, then energy states of the particle are called states.	
5	Scanning tunneling microscope (STM) type of microscope is based on the quantum mechanical phenomenon known as	

Paper / Subject Code: 78847 / Physics Paper II

Q2.) Attempt any one

(8)

- How does de Broglie postulate enter into Schrodinger's theory?
- 2 Derive equation of continuity in quantum mechanics and discuss its significance.

B) Attempt any one

(8)

- Discuss Max Born interpretation of wave mechanics. Hence explain 'Normalization of wave function'.
- 2 Derive Schrodinger's Time Independent Equation (STIE).

C) Attempt any one

(4)

Find the expectation value of particle position if the eigen function describing the particle is given by

$$\Psi = ax ;$$

$$= 0$$

0 < x < 1elsewhere.

2 Show that for stationary states, expectation of momentum is independent of time (consider 1-D motion).

Attempt any one O3. A)

(8)

A particle is subjected to a three dimensional box and is subjected to a potential given by

$$V(x) = 0$$
 inside the box

$$V(x) = V_0$$
 outside the box

Write down Schrodinger's time independent wave equation and obtain normalised

Consider an electron of energy E incident on the potential step defined by 2

$$V(x) = 0$$
 for $x \le 0$

$$V(x) = V_0$$
 for $x \ge 0$

Show that the particle can penetrate into the second region even if its energy is less than V₀.

B) Attempt any one

(8)

- Set up Schrodinger's equation for a free particle. Solve the equation to obtain the eigenfunction. Show that the expectation value of momentum of the particle is same as the momentum that a classical particle will have.
- 2 Consider a particle confined to move in an infinite rectangular potential well. Show that expectation value of the position co-ordinate x of a particle in the well depends upon the length of the well.

C) Attempt any one

(4)

A neutron of kinetic energy 5 MeV tries to enter a nucleus and its potential energy drops at the nuclear surface very rapidly from a constant external value V = 0 to a constant internal value V = -50 MeV. Estimate the probability that the neutron will be reflected at the nuclear surface.

Paper / Subject Code: 78847 / Physics Paper II

An α particle having energy 10 MeV approaches a potential step of height 50 MeV and width 10^{-15} m. Determine the transition coefficient if mass of α particle is 6.68×10^{-27} kg.

Q4. A) Attempt any one

(8)

- State correspondence principle. Show how quantum and classical probabilities of a one-dimensional oscillator leads to correspondence principle.
- Discuss in detail the penetration of particle having energy E_0 across potential barrier of finite height V_0 and width (a) for the case $E_0 > V_0$.

B) Attempt any one

(8)

- Show that the STIE for a one-dimensional harmonic oscillator can be written in the form $(\frac{\partial^2}{\partial y^2} y^2) \Psi = -2\epsilon \Psi$
- 2 Establish the Schrodinger's equation for linear harmonic oscillator and solve it to obtain its eigen value and eigen function.

C) Attempt any one

(4)

- An α-particle having energy 10 MeV approaches a potential barrier of height 30 MeV. Find the width of potential barrier if the transmission coefficient is 2×10^{-3} . (Given: mass of α-particle = 6.68×10^{-27} Kg).
- A beam of electrons is incident on a potential barrier 5eV high and 5A wide. What should be their energy so that half of them tunnel through the barrier?

Q5. Attempt any Four

(20)

- 1 Write a short on 'Operators
- 2 'Wave functions add, not the probabilities', explain '.
- 3 Show that the eigen functions of a quantum mechanical operator with different eigen values are orthogonal.
- A particle arrives at a step potential having height V_0 . Discuss the problem classically when energy of the particle is
 - (i) more than the step height
 - (ii) less than the step height
- The wave function for the ground state of a harmonic oscillator of mass m and force constant k is proportional to $e^{\frac{\alpha^2 x^2}{2}}$ where $\alpha^2 = \frac{m\omega}{\hbar}$ and $\omega^2 = \frac{k}{m}$. Show that this is a solution and find the corresponding eigen value
- 6 Find the expectation value <x> for the first excited state of a simple harmonic oscillator.
