(3 Hours)

(Total Marks: 100)

N.B: (1) All questions are compulsory. (2) Figures to the right indicate maximum marks. (3) Use of non-programmable calculators is permitted. (4) Symbols used have their usual meaning. 1. A) Select correct answer. (12)1 The scale factors of cylindrical co-ordinates (ρ, θ, z) are b) $(1, 1, \rho)$ c) $(1, \rho, z)$ d) $(1, \rho, 1)$. a) $(1, \theta, \rho)$ 2 The work done in respective units by the force $\vec{F} = 2x \hat{i} + y \hat{j}$ in moving a particle from origin to point P(2, 2)a) 4 b) 8 c) 6 🔊 d) 2. 3 When a decibel value is computed by comparing a power value to 1 mW it is called as _ a) dBm b) dBc c) dB d) DB. 4 The value of stability factor for a base-resistor bias is a) $R_B (\beta + 1)$ b) $(\beta + 1) R_{C}$ c) $(\beta + 1)$ d) $1 - \beta$. 5 An ideal op-amp has a) infinite input and output resistance b) infinite CMRR and zero temperature drift c) zero input resistance and zero slew rate d)zero output resistance and large offset voltage. 6 For sustained sinusoidal oscillations, total loop gain should be a) 0 b) ∞ c) 1 d) -1. **B**) Answer in one sentence. (03)1 Give the necessary and sufficient condition that the line integral of $\int_{c} \vec{A} \cdot d\vec{r} =$ 0 for every close curve C. 2 What should be an ideal value of input resistance of an amplifier? **3** What is bandwidth of an op-amp? C) Fill in the Blanks. (5) 1 If the work done by a force in moving a particle in closed path is zero, the force field is said to be -----. 2 Volume element in cylindrical co-ordinate system is ------. $\mathbf{3}$ Halving the power of an amplifier corresponds to a decrease of ------ dB. 4 The operating point is also called the ------ point. 5 The op-amp integrator circuit will convert a square wave into a -----wave. A) Attempt any one. (8) 2. 1 Check the Fundamental theorem for Gradient using $\varphi = x^2 + 4xy + 2yz^3$ and end points A(0,0,0) and B(1,1,1) considering two paths i) $(0,0,0) \rightarrow (0,0,1) \rightarrow (0,1,1) \rightarrow (1,1,1)$ ii) The parabolic path = x^2 , y = x.

- 2 Verify Stoke's theorem for $\vec{F} = (2x y)\hat{\imath} yz^2\hat{\jmath} y^2z\hat{k}$ taking a surface S, upper half of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.
- **B**) Attempt **any one**.
- 1 Determine the scale factors for spherical coordinate system.
- 2 If $\vec{F} = 2xz\,\hat{\imath} + 3xy\,\hat{\jmath} + 3yz\,\hat{k}$ evaluate $\oint \vec{F} \cdot d\vec{s}$ over a closed surface S bounded by x=0, x=1; y=0, y=1; z=0, z=1.
- C) Attempt any one.
- 1 If $\vec{F} = \nabla V$, where V(x, y, z) is a single valued continuous function, show that $\int_{R}^{Q} \vec{F} \cdot d\vec{r}$ is independent of path.
- 2 Calculate $I = \int (3x^2 dx xy dy)$ over
 - a) Straight line y = x from (0,0) to (1,1)
 - b) Parabola $y = x^2$ from (0,0) to (1,1).

3. A) Attempt **any one**.

- 1 Draw the circuit diagram of CE amplifier using fixed bias method. Derive expression for I_B and V_{CE} . Hence obtain the expression for stability factor. Give one advantage and disadvantage of this method.
- 2 Obtain the expression for the input R_i and output R_o resistance of a general amplifier. What should be their ideal values? Explain with proper reasoning.

B) Attempt any one.

- **1** Draw the circuit diagram for voltage divider CE amplifier. Show that the stability factor is unity. Give one advantage and disadvantage of voltage divider bias.
- 2 With the help of a block diagram derive the relation between gain without feedback and gain with feedback when negative feedback is introduced. Explain, What is the effect of negative feedback on bandwidth?

C) Attempt any one.

- 1 In a negative feedback amplifier A = 100, β = 0.02 and input signal voltage is 40 mV.
 - Determine (i) voltage gain with feedback (ii) Feedback voltage (iii) output voltage.
- **2** What is meant by faithful amplification? Give three conditions to achieve faithful amplification.

4. A) Attempt any one.

- 1 Draw the circuit diagram of Colpitt's oscillator. Explain its working. What is the (8) frequency of oscillation of the circuit?
- 2 What is a differentiator? Explain its working. Derive the relation between input and output voltage.
- B) Attempt any one.
 - 1 What is an oscillator? Draw the circuit diagram of phase shift oscillator. Discuss its (8) working.

(8)

(4)

(8)

(8)

(4)

- 2 What is a non-inverting amplifier? Draw the circuit diagram of non-inverting amplifier using op-amp. Derive the expression for gain of the circuit.
- C) Attempt any one.
- 1 Define comparator circuit. Draw the circuit diagram and sketch the input-output (4) characteristic.
- 2 A typical op-amp inverting adder circuit has, $V_1 = 2V$, $V_2 = 3V$ and $V_3 = 4V$. The three input resistors are $R_1 = 4K\Omega$, $R_2 = 4K\Omega$ and $R_3 = 4K\Omega$. A resistance of 5K Ω is used in the feedback path. What will be the output voltage? What should be the value of feedback resistor if the circuit has to work as inverting averager?

5. Attempt **any Four** :

- 1 State and explain the Fundamental theorem for Curl.
- 2 Considering scale factors for cylindrical co-ordinates derive expressions for arc, area and volume elements.
- 3 For the emitter bias circuit shown below, find I_E, I_C, V_C and V_{CE} for $\beta = 85$ and V_{BE} = 0.7V.

- 4 An amplifier has a signal input voltage V_i, of 0.25 V and draws 1 mA current from the source. The amplifier delivers 8 V to a load at 10 mA. Determine the voltage gain, current gain and power gain in decibels.
- 5 A Wien bridge oscillator using op-amp has $R_1 = 2K\Omega$, $R_2 = 2.5K\Omega$, $C_1 = 0.2\mu$ F and $C_2 = 0.4\mu$ F. Calculate the frequency of oscillation. If a capacitance of 0.4μ F is connected parallel to C_2 , what will be the output frequency?
- 6 In a typical op-amp integrator circuit, $R = 10K\Omega$ and $C = 2.2\mu$ F and Vi = 50 mV. What will be output voltage 1ms after input is applied? How much time is required for the output to become -5V?

Page 3 of 3

(20)