VCD///1022 S.Y.B.Sc SEM III PHY-II_ 100 MARKS 3 HOURS

Note: i) All the questions are compulsory.

ii) Figures tiii) Use of no	o the right indicate full m on programmable calcula	narks. tor is allowed.	
Q.1.A] Select the c			[12M]
(a)Rejects common (c)Both (a) & (b)	m-mode signals (b)	b) Amplify differential-nally Accept two input sign	
(a)20dB	s a power gain of 100.Its dI (b)40dB sphere of radius 3R is	(c)10dB	(d) none
$(a)\frac{4}{3}\pi R^3$	sphere of radius 3R is (b) $2\pi R^3$	(c) $36\pi R^3$	(d) none
, , 3	he collector current I _C incre		on, then value of
(a)remains same	(b)decreases e line integral $\int grad(x +$	(c)increases $y - z$ dr from (0.11)	
	<u> </u>	(c)0	(d) none
(a)-1	(b)3 with force $\vec{E} = vz\hat{i} + zv\hat{i} + vz\hat{i}$		om point $(1,1,1)$ to $(3,3,2)$
along a path is	y the forcer -yzt+zxj+xyk	t in moving a particle in	om pom (1,1,1) to (3,3,2)
(a)51	(b)0	(c)17	(d)none
0.1 Bl 4	ana statament:		[3M]
Q.1.B] Answer in	n case of cutoff region oper	ration.	[311]
* *	in the direction of $\vec{A} = 2\hat{\imath} +$		
3. Which IC is used	d to study Op-Amp?		
0.4.61.771111			[5M]
Q.1.C] Fill in the	ufficient condition that line	e integral ($A dr = 0$ for	
1)A necessary & s		e miegraf 71. a. 6 101	
2)Volume element	in cylindrical system is		
	tor value for the base resist		
	cillations, the loop gain sho ence between the output &		mplifier is
3) The phase differ	chec between the output &	imput voltages of OD as	inpititor to
			FO. 11
Q.2.A] Attempt a	ny one: -	π α3 α7/3 ο	[8M]
	cylindrical co-ordinates: \int_0^2		C
2. S is the surface if $\vec{A} = (x^2 + y^2)\hat{\imath} - 2x^2\hat{\jmath}$	of the plane $2x+y+2z=3$ in $+2yz\hat{k}$.	the first octant. Evaluat	eJ A.n dS
	gence theorem evaluate ff	$\vec{F}.\vec{n}\vec{dS}$	
			0 to 1, $y=0$ to 1 & $z=0$ to 1

Q.2.B] Attempt any one: -

[8M]

1. Evaluate using spherical co-ordinates: $\int_0^{2\pi} \int_0^\pi \int_0^{(1-\cos\phi)/2} r^2 \sin\phi dr d\phi d\theta$

2. Check the fundamental theorem for gradients using $T=x^2+4xy+2yz^3$ the points A=(0,0,0), B=(1,1,1) and the three paths,

i) $(0,0,0) \rightarrow (1,0,0) \rightarrow (1,1,0) \rightarrow (1,1,1)$

ii) $(0,0,0) \rightarrow (1,0,0) \rightarrow (1,1,0) \rightarrow (1,1,1)$

iii) The parabolic path $z=x^2$, y=x

Q.2.C] Attempt any one: -

[4M]

1.State fundamental theorem of Curls with diagram.

2. Show that $\frac{\partial r}{\partial r} \cdot \frac{\partial r}{\partial \theta} = \frac{\partial r}{\partial \phi} \cdot \frac{\partial r}{\partial r} = \frac{\partial r}{\partial \theta} \cdot \frac{\partial r}{\partial \phi} = 0$ when $x = r \sin\theta \cos\phi$, $y = r \sin\theta \sin\phi$, $z = r \cos\theta$ are the

Q.3.A] Attempt any one: -

[8M]

1. Explain any four advantages of Negative Feedback.

2.Describe de bias circuit with Emitter resistor for a transistor. Determine its stability factor. State its advantages.

Q.3.B] Attempt any one: -

1. Describe Voltage divider biasing for a transistor. Determine its stability factor. State its [8M] advantages & disadvantages.

2. What is faithful amplification? State and explain any two conditions to be fulfilled to achieve faithful amplification in a transistorized amplifier.

Q.3.C] Attempt any one:

- 1. A power amplifier has an input voltage v_i =12V peak to peak & an output voltage v_o =8V peak to peak across a load resistance of 8Ω . The amplifier input resistance is $500 \text{K}\Omega$. Determine its
- 2. Define amplifier.An amplifier has an input signal voltage 0.1V & draws 0.1mA from the source. The amplifier delivers 5V to a load at 10mA. Determine the voltage, current and power gain.

Q.4.A] Attempt any one: -

1.Draw labeled diagram of Colpitts oscillator & using this diagram determine the following a)feedback fraction

b)min. gain for sustain oscillations Use the foll. Components: C_1 =0.014 μ F, C_2 =0.14 μ F, L=20 μ H.

c)freq. of oscillation.

PHY-II __ 100 MARKS 3 HOURS S.Y.B.Sc SEM III VCD/11/022

2.By means of a neat circuit diagram explain the use of Op-amp as a Inverting amplifier. What is the input resistance of Op-amp used as inverting amplifier when its output is -12V, with input of 120 mV. The feedback resistance is $10 \text{M}\Omega$.

Q.4.B] Attempt any one: -

[8M]

1.Explain the basic requirements of Sustained oscillations. Determine the operating frequency & feedback factor for Hartley oscillator, using the following data:L₁=200mH,L₂=2000mF,M=0.002mH,C=20pF

2. Explain the architecture block diagram of a typical Op-amp. Calculate the output voltage of an Op-amp working as a differentiator; A ramp of 3V height drives the circuit and has width of 3msec. If the R_fC time constant is 1 msec. for $C=0.1\mu F$

Q.4.C] Attempt any one: -

[4M]

1. Write a note on Hartley Oscillator.

2. Determine the output voltage of a non-inverting amplifier for R_i =200K, R_i =2M Ω & input voltage10mV.

Q.5] Answer the following: -[Any four]

[20M]

1. Explain an oscillator with a simple block diagram.

2. By means of a neat circuit diagram explain the use of Op-amp as a Non-inverting amplifier.

3. Determine the volume integral of the function $T=z^2$ over the tetrahedron with corners at (0,0,0),(1,0,0),(0,1,0) & (0,0,1).

4.A solid of constant density $\rho=1$ occupies the region S.Find the solids M.I.about z-axis. Given:

 $r \le 1$ by the cone $\phi = \pi/3$

5.It is desired to set the operating point at 4V,1.2 mA by biasing silicon transistor with collector feedback resistor R_B . If $\beta = 120$, find the value of R_B .

6.Determine the open circuit voltage of the source, vs to provide an amplifier input voltage vi of 0.25V when the internal resistance of the source is 50Ω .