Note: (1) All questions are compulsory.

(2) Figures to the right indicate maximum marks.

(3) Use of non-programmable calculators is permitted.

- (4) Symbols used have their usual meaning.
- Q.1. (A) Choose correct alternative in each of the following: (12)
- (i) The unit of absoption coefficient of sound is
 - a) phon b) sone c) sobine d) watt/m²
- (ii) The refractive index of core of optical fibre is
 - a) Larger than that of cladding material
 - b) Smaller than that of cladding material
 - c) Equal to the refractive index of cladding material
 - d) None of these
- (iii) Example of crystal with perfect covalent bonding is
 - a) Diamond b) methane c) NaCl d) sugar
- (iv)The magnetic material to be used for data storage should have
 - a) Narrow hysteresis loop
 - b) Square hysteresis loop
 - c) Low retentivity and low coercivity
 - d) None of these
- (v)The magnetic moment of any electron is always
 - a) Less than Bohr magneton (μ_B)
 - b)Greater than bohr magneton
 - c) Both (a) and (b)
 - d) Equal to bohr magneton
- (vi) Liquid crystal display is actually a combination of two states of matter
- a) Solid-solia b) solid-liquid c) liquid-liquid d) none of these

- Q.1. (B) Answer in one statement: (03) (i) What is metastable state? (ii) Define primitive cell. (iii) Define resistivity. Q.1. (C) Fill in the blanks: (05) (i) Through holography we can produce _ _____ dimensional images of objects. (ii) The refractive index of core of an optical fibre is_____ than cladding material. (iii) The SI unit of conductivity is (iv) The magnetic moment of any electron is always_____ than Bhor magneton. (v) The number of atoms per unit cell in FCC structure is _____. Q.2. (A) Attempt any one: (08) (i) What is meant by reverberation and reverberation time?explain the causes to form reverberation in a hall. How it can be minimised? (ii) With the help of a neat labelled diagram of optical resonator explain the basic principle of laser. Also explain the process of amplification. Q.2. (B) Attempt any one: (08) (i) Describe the structure of a step-index optical fibre. Explain the propogation of light through (ii) Define absorption coefficient of a material and hence determine the relation between reverberation time of a hall and absorption coefficient.
- Q.2. (C) Attempt any one: (04)
- (i) The room has wall area 200 m², the floor area is 180 m² and the ceiling area is 180 m². The volume of the auditorium is 845 m³. The average sound absorption coefficient for the walls is 0.028, for ceiling is 0.65 and for the floor is 0.06 Calculate the average sound absorption
- (ii) The core and the cladding of an optical fibre have refractive indices 1.432 and 1.413 respectively. Find the acceptance angle in air; and the critical angle for core/cladding interface.
- Q.3. (A) Attempt any one: (08)
- (i) Show that in cubic crystal the distance between adjacent planes with miller indices (hkl) is given by, $d_{hkl} = a/(h^2+k^2+l^2)^{1/2}$, where a is the lattice constant.
- (ii) Discuss the crystal structures of diamond, caesium chloride, sodium chloride and zinc

- Q.3. (B) Attempt any one: (08)
- (i) Obtain distribution of atoms in the atomic planes of simple cubic crystal for (010),(110) and(111) planes.
- (ii) What is a close-packed structure? Explain with suitable diagram the HCP and FCC close-packed structures.
- Q.3. (C) Attempt any one: (04)
- (i) Copper has FCC structure and its atomic radius is 1.278A⁰.calculate the interplanar spacing for the (111) and (321) planes.
- (ii) The lattice constant of the unit cell of a bcc structure is 0.287 nm. Find the number of atoms/mm² of the planes (100), (110) and (111).
- Q.4. (A) Attempt any one: (08)
- (i) Mention any four important characteristics of semiconducting materials and any two applications.
- (ii) Explain hysteresis curve of ferromagnetic materials on the basis of domain theory.
- Q.4. (B) Attempt any one: (08)
- (i) How the materials are classified according to their magnetic properties? Explain.
- (ii) Mention any four important characteristics of insulating materials and any two applications.
- Q.4. (C) Attempt any one: (04)
- (i) A metal wire has a resistance of 2.52 Ω at 0° C. if its temperature coefficient of resistance is 3.8 X 10^{-3} / $^{\circ}$ C, find the resistance of wire at 55 $^{\circ}$ C.
- (ii) Find the relative permeability of ferromagnetic material if a magnetic field of strength 220 A/m produces magnetization of 3300 A/m in it.
 - Q.5. Attempt any four: (20)
 - (i) State the factors affecting the acoustics of building.
 - (ii) Explain the applications of fibre optics.
 - (iii) Explain crystal lattice and miller indices.
 - (iv) What is a bravis or space lattice? How is it related to crystal structure?
 - (v) Write a note on dielectric materials.
 - (vi)Compare paramagnetic and ferromagnetic materials.