		(Time: 3 hours) (Total Mark	s: 100)
N.B	: (1)	All questions are compulsory.	
		es to the right indicate maximum marks.	
	-	f non-programmable calculators is permitted.	
(4) S	ymb	ols used have their usual meaning	0 4 4 V
Q1.	A)	Select correct answer	(12)
	1	Oscillations are damped due to the	
		a) restoring force b) frictional force c) gravitational force d) driving force	
	2	Minimum time period of a compound pendulum is given by	O STATE
		a) $T = 2\pi \sqrt{\frac{2K}{2g}}$ b) $T = 2\pi \sqrt{\frac{K}{2g}}$ c) $T = \pi \sqrt{\frac{2K}{2g}}$ d) $T = 2\pi \sqrt{\frac{2K}{g}}$	Jolo A
	3	A Carnot engine whose source temperature is 400 K takes 500 calories of	
		heat at this temperature and rejects 400 calories of heat to the sink. The	
		temperature of the sink is	
		a) 320 K b) 300 K c) 220 K d) 200 K	
	4	An irreversible process is necessarily	
		a) quasi static b) non-dissipative c) non-static d) none of these	
	5	In case of substances that expands on melting, dP/dT is	
		a) positive b) negative c) zero d) none of these	
	- 100		
	6	According to third law of thermodynamics it is not possible to attain the	
É	SE ON	temperature	
200		a) 0°C b) 0 K c) 0°F d) 0°C and 0°F	
			(02)
	D)	Answer in one sentence Give the expression for the time period of a compound pendulum	(03)
	2	Give the expression for the time period of a compound pendulum.	
300	3	Give the Clausius statement of the second law of thermodynamics.	
10 T		If Diesel and Otto engines have same compression ratio then which one is more efficient?	
29	1,92 1,92 5	more emelent:	
33. S.		Fill in the Blanks	(5)
	1	Energy of a damped harmonic oscillator decreases with	(3)
		time.	
9F. F.	2	Steady state displacement and the driving force are in phase for	
37.0	0 4.	frequencies.	
30	3	The entropy cannot be destroyed but it can be	
20.00	300		

54368

Paper / Subject Code: 79516 / Physics - Paper I

	4	temperatures do not exist on the thermodynamic scale	99
		of temperature.	
	5	The process in the porous plug experiment is	
Q2.	A)	Attempt any one	(8)
	1	Set up the differential equation for a forced damped harmonic oscillator.	0,01
		Show that its solution consists of a transient term and a steady state term.	200
	2	Describe any two methods of characterizing a damped motion.	
	B)	Attempt any one	(8)
	1	What is reversible compound pendulum? Derive Bessel's formula to	200
		calculate 'g' using it.	95 T
	2	Prove that "If no external force acts on the system then the linear	(2, Z)
		momentum of the system of particles remains conserved".	Y. O.
	C)	Attempt any one	(4)
	1	State the advantages of a compound pendulum over a simple pendulum.	
	2	The natural frequency of mass vibrating on a spring is 20 Hz while its	
		frequency with damping is 16 Hz. Find the logarithmic decrement.	
Q3.	A)	Attempt any one	(8)
	1	Give the statements of the Carnot's theorem and prove them.	
	2	Show that the ratio of any two temperatures on the thermodynamic scale	
		of temperature is equal to the ratio of heat absorbed and heat rejected by a	
		reversible heat engine operating between these two temperatures.	
	B)	Attempt any one	(8)
	T	State and prove the Clausius theorem.	
ŝ	2	Draw the T - S diagram of a Carnot cycle. Explain each stage of the	
		cycle. Deduce the expression for efficiency of the Carnot cycle.	
	C)	Attempt any one	(4)
	1	What is the change in entropy when 10 kg of water at 100°C is converted	
100 ST	X 79	into steam at the same temperature?	
0, Z. 0	SET	(Given:- Latent heat of steam = 540 cal/g)	
	2	Explain how the size of a degree is determined on the thermodynamic	
		scale.	
Q4.	A	Attempt any one	(8)
5 F S	1	Describe the working of Otto engine with the help of its p-V diagram.	` /
\$ 27.0°	2	Write the Maxwell's general equation. From this derive the four	
335	100	fundamental equations.	
150	30	(0) 4 4 (V)(2) - 1	

B) Attempt any one

(8)

- With the help of a neat diagram explain the liquefaction of helium by Onnes method.
- 2 Explain Rankine cycle and derive an expression for its thermal efficiency.

C) Attempt any one

(4)

- Using Maxwell's thermodynamic relations prove $dT = \frac{TV\alpha}{c_P}dP$ where α is volume coefficient of expansion.
- Write a short note on the properties of Helium.

Q5. Attempt any Four

(20)

- 1 Explain the concept of center of mass of a system of particles.
- 2 Show that centres of suspension and centers of oscillation in a compound pendulum are mutually interchangeable.
- 3 Give the expressions for entropy change between two states of an ideal gas in various forms.
- 4 Obtain an expression for unavailable energy in an irreversible process.
- The helium gas suffers Joule-Thomson expansion at -150°C. Does the gas show a heating effect or cooling effect? (Given:- R = 0.083 atm.lit/mol.K, b = 0.02357 lit/mol and a = 0.0341 atm.lit²/mol²
- 6 Calculate the change in the efficiency of an Otto engine if the compression ratio is increased from 8 to 10. (Given: $\gamma = 1.4$)
