Q.P. Code: SC2P020316X Sem II 2015-16 PG-225 Note: 1) All the questions are compulsory. 28/3/16

- 2) Figures to the right indicates full marks.
- 3) Draw neat diagram wherever necessary.
- 4) Use of log table or Non programmable calculator is allowed.
- Q. 1 A) Answer the following : (any one)
 - (i) Use Thevenin theorem and determine the load current for the circuit shown in following diagram.

(ii) Describe the ballistic galvanometer of a suspended type and give theory of its working

B) Answer the following : (any one)

- (i) Can you determine the power factor and the Q₁ factor of a coil using a suitable ac bridge? Explain.
- (ii) State and explain maximum power transfer theorem.

C) Answer the following : (any one)

(i) De Sauty's capacitance bridge has $R_1 = 800\Omega$, $R_2 = 1000\Omega$ and $C_2 = 0.22\mu$ F. Find the value of the other capacitor when the bridge is balanced.

(ii) A B.G. has a steady deflection of 150mm for a current of 0.3μ A at a distance of 1 meter it completes 10 oscillations in 62.8 sec. Find its current and charge sensitivities. What should be the undamped throw. When a charge of 0.15 m circulates through the B.G.?

Q.2 A) Answer the following : (any one)

- (i) What do you understand by Nuclear magnetic resonance? Mention its applications.
- (ii) What is 'radioactivity'? Explain the five kinds of radioactivity with suitable examples.

B) Answer the following : (any one)

- (i) Justify the statement that, "Carbon dating an archaeological time scale". Define half life of a radio active element.
- (ii) Write a note on nuclear size and nuclear spin. Hence show that the radius of an atomic

nuclei is, $R = R_0 A^{\frac{1}{3}}$

5

8

7

P.T.O.

C) Answer the following : (any one)

- (i) Using the given data find the B.E. of neutron in the ${}_{3}^{7}$ Li nucleus. Express it in MeV and joules Given ${}_{3}^{7}$ Li = 7.016004, ${}_{3}^{6}$ Li = 6.015125 and ${}_{0}n^{1}$ = 1.008665.
- (ii) In a store 10mg of a radioadctive sample is kept for 4 years. A radioactive sample has half life time of two years. Find how much of the material unchanged?

(2)

Q.3 A) Answer the following : (any one)

- (i) Explain the experimental demonstration of the compton effect and show that its energy is, $hv_0 = \frac{hv}{1 + \frac{hv}{moc^2}(1 \cos\theta)}$ where symbols have their usual meaning.
- (ii) With the help of a neat labelled diagram explain the formation of a wave group formed by the super position of two waves defined by two wave function ψ_1 and ψ_{11} having same amplitude, different propagation number and different angular velocity.

B) Answer the following : (any one)

- (i) What is dual nature of a matter? Explain it on the basis of Davisson Germer experiment. Derive the necessary relation to show that the de-Broglie wave associated with an electron is of the order 1.65A°.
- (ii) Write a note on:
 - (a) Pair production

(b) Photons and Gravity

- C) Answer the following : (any one)
 - (i) If a Photon has an energy 1KeV, what will be its wavelength and frequency.
- (ii) Calculate the certainty with which one can locate the position of an electron, moving with a speed of 500 m/s with an accuracy 0.005%. Given $h = 6.6 \times 10^{-34}$ J-S, $m = 9.1 \times 10^{-31}$ kg

Q. 4 Answer the following : (any three)

- A) Obtain the condition of balance for maxwell's L/C Bridge.
- B) State Thevenin's and Norton's theorem illustrate them with suitable example.
- C) If a sample of radium has half life time of the order 22 years. Find the time taken by a sample to decrease to 10%.
- D) Define: Mass defect and Binding energy and Binding energy per nucleon.
- E) Calculate the wavelength that is scattered through an angle 180° when a monochromatic X radiation of wavelength 0.124A° suffers compton shift, from a carbon block.
- F) State Heisenberg uncertainty principle relating conjugate variables:
 - (i) Position and Momentum
 - (ii) Energy and time

The End -

Scanned by CamScanner

5

15