	[Time:	Three	Hours]	[Marks:100]	N. F.
N. B.	(2) Fi (3) Di	i gures t raw ne a	ons are compulsory . to the right indicate full marks. t diagrams wherever necessary . have usual meaning unless otherwise stated.		
			on-programmable calculator is		90
Q.1.	A)	(i)	Select the correct alternative For homogeneous isotropic material Poisson's ratio(σ) is given as		
					200
			a. $\frac{Y}{\eta} - 1$	Y A POSSI	383
			$\frac{1}{\eta}$	b. $\frac{Y}{2\eta}$ -1	
					Ď,
			c. $\frac{Y}{2\eta} + 1$	$\mathbf{d} \cdot \frac{\mathbf{Y}}{\eta} + 1$	
		(::)			
		(ii)	In the equation of continuity <i>A</i> inversely proportional to	area of cross section of pipe is	
			a. volume of fluid	b. density of fluid	
			c. velocity of fluid	d. pressure of fluid	
		(iii)	**************************************	a's Eyepiece is 11.25 cm then the	
		d eye lens is			
			a. 15cm	b. 10cm	
			c. 12cm	d. 8cm	
		(iv)	The defect in a lens due to pri	smatic action of the lens is	
			a. Spherical aberrations	b. Chromatic aberrations	
		27.70	c. Distortion	d. Coma	
	8	(v)	Temperature of the gas arises	due to	
	SE SE	NA DA	a. Random motion of gas	b. Mass of the gas	
	15 2 D		molecules.		
, A	3,40,43	2.7.5.6.	c. Weight of the gas	d. None of the above	
900	3,73,93	(vi)	In Van der Waals equation, co a. a/V^2		
920			c. V - b	b. a/V d. b/V^2	
300	222	83.73		u. <i>b) v</i>	
400	B)		Answer in one sentence		3
	7220	(i)	What is streamline flow?		
		(ii)	Define linear magnification of	a lens.	
20 VA		(iii)	What is critical temperature?		
A SO		K Z S			
	C)		Fill in the blanks		5
	Z D D Z	(i)	The ratio of shear stress and s	hear strain is	
		(ii)	A person standing in an elevation when the elevator is	or feels an increase in his weight	
2 6 9 9 5 9 9 9 7 9 9 9		(iii)	The radius of the n th bright Ne to the square root of na system.	ewton's rings is directly proportional tural numbers in the reflected	

Paper / Subject Code: 81117 / Physics - Paper I

		(iv)	To have complete achromatism, the distance between the two coaxial lenses must be equal to the focal length of the two lenses				
		(v)	lenses. Work is dependent function.	32. Z			
Q. 2	A)	(*)	Attempt ANY ONE	8			
Q. 2	A)	(i)					
		(1)	$\frac{1}{2}\rho v^2 = constant$. where, symbols have their usual meanings.				
		(::)		379			
		(ii)	Show that torque required to twist the cylinder is $\tau = \frac{\pi \eta r^4}{2l}$ If the				
			'l' is a length and 'r' the radius of cylinder	336			
	B)		Attempt ANY ONE	8			
		(i)	Write the applications of Bernoulli's theorem.	Y A S			
		(ii)	For a homogeneous isotropic material derive the relation between Young's modulus, modulus of rigidity η and Poisson's ratio σ .	E STATE OF THE STA			
	C)		Attempt ANY ONE	4			
		(i)	A 10 kg block rests on a smooth frictionless table. A string attached to the block passes over a frictionless pulley and a 5 kg mass hangs from the string. Find the acceleration and tension				
		(ii)	produced in the string. For silver Young's modulus is 7.3x10 ¹⁰ N/m ² and bulk				
		(11)	modulus(K) is 1.2x10 ¹¹ N/m ² . Find the Poisson's ratio of Silver.				
Q. 3	A)		Attempt ANY ONE	8			
		(i)	Derive the expression for optical path difference between two rays in the case of interference due to transmitted light in thin film.				
		(ii)	Derive the expression for the fringe width of interference pattern in the case of a wedge shaped film.				
	B)		Attempt ANY ONE	8			
	750	(i)	Derive an expression for equivalent focal power for a system				
		7 6 E	having two thin lenses separated by a finite distance.				
300		(ii)	Describe and explain the working of Huygens eyepiece.				
	C)		Attempt ANY ONE	4			
		(i)	In Newton's rings experiment, diameter of the 15th ring is 6.9mm and that of the 5 th ring is 4.36mm. If the radius of the curvature of lens is 1.1m, calculate wavelength of the light used.				
	\$ \$ \$ \$ C	(ii)	Two thin convex lenses having focal length 15cm and 12cm are				
			coaxial and separated by a distance of 10cm. Find the equivalent				
			focal length and positions of principal points.				
Q. 4	A)		Attempt ANY ONE	8			
	SP SP	(i)	With the corrections to pressure and volume, arrive at Van der Waals equation.				
		(ii)	Show for Reversible adiabatic process				
	556	75 X X					
	VI STA	10 6 E	$\left(\frac{\partial T}{\partial V}\right) = \frac{(C_V - C_P)}{\alpha V C_V}$				
25,5	100 170	3,74,00	where α is the isobaric volume coefficient of expansion.				

B) **Attempt ANY ONE**

(i) Show that for isothermal process work done, W is

$$W = RT \times 2.303 \log_{10} \frac{P_1}{P_2}$$

8

A perfect gas at room temperature having volume of 3m³ and initial pressure of 2 atm undergoes isothermal expansion to a volume of 5 m³. Calculate the work done by the gas.

Derive Mayer's relation. (ii)

C) **Attempt ANY ONE**

> Pressure p, Volume V and temperature Tof a certain material are **(i)** related by,

$$p = \frac{AT - BT^2}{V}$$

Find the expression for the work done by the material if the temperature changes from T_1 to T_2 while the pressure remains constant. What is work done if volume is to be kept constant?

Show that for adiabatic process work done, W is (ii)

$$W = \frac{R}{\gamma - 1} (T_1 - T_2)$$

Q. 5 Attempt ANY FOUR

- 20 Write short note on limiting value of Poisson's ratio **(i)**
- (ii) Show that velocity of fluid flowing through a pipe is inversely proportional to area of cross sections of a pipe.
- Derive an expression for achromatic combination of two thin (iii) lenses in contact.
- (iv) Derive Newton's lens equation
- What are the limitations of Van der Waals equations? **(v)**
- If $T_C = 132$ K, $P_C = 32.7$ atm and R = 82.07 cm³ atoms K⁻¹, (vi) calculate b.