120

2 1/2 HRS

- 1. All questions are compulsory.
- 2. All questions carry equal marks.
- 3. Draw neat, labelled diagrams wherever necessary

Q.1 A] Attempt any one of the following:

- i) Explain how to determine the size of nucleus on the basis of Rutherford α- particle scattering.
- ii) State and explain the law of radioactive disintegration. Derive necessary relation.

Q.1 B] Attempt any two of the following:

[Each 5M]

- i) Write a note on "nuclear size and nuclear density".
- ii) Determine: a) Radius of a nucleus b) Volume c) Mass of copper nucleus, having atomic mass number 63. $[r_0=1.3 \text{ fm}]$
- iii) Define half -life period of radioactive sample. Show that $\tau = 0.693/\lambda$.
- iv) If a sample of radium has half-life time of the order 22 years. Find the time taken by a sample to decrease to 10%.

Q.2 A] Attempt any one of the following:

- i) Define Q-value of the nuclear reaction. Obtain an expression for Q equation.
- ii) Explain construction and working of proportional counter.

Q.2 B] Attempt any two of the following:

[Each 5M]

- i) Write shorts notes on the following: a) direct nuclear reactions. b) Elastic Scattering.
- ii) Write a short note on Bremsstrahlung process.
- iii) Explain the interaction between particles and matter.
- v) What is Geiger counter?

Q.3 A] Attempt any one of the following:

[10M]

- i) State & explain de Broglie hypothesis & how de Broglie supports the Bohr quantization rule.
- ii) How are x-rays produced? List some important properties of x-rays.

(120)

Q.3 B] Attempt any two of the following:

[Each 5M]

- i) Write a short note on Black body.
- ii) What is de Broglie wavelength associated with a proton moving with a velocity equal to $1/30^{th}$ of the velocity of light? [Mass of proton= 1.67×10^{-27} kg]
- iii) Write a short note on Theory of Black holes.
- iv) The first order Bragg reflection in a crystal takes place at glancing angle of 14⁰ 42. Calculate the angle for the second order Bragg reflection.

Q.4 Attempt any three of the following:

[Each 5M]

- i) Define: a) Binding energy and b) packing fraction.
- ii) Using the given data find the B.E. of neutron in the 3Li⁷ nucleus. Express it in MeV and joules.

[Given: $_3\text{Li}^7 = 7.016004$, $_3\text{Li}^6 = 6.015125$ and $_0\text{n}^1 = 1.008665$]

- iii) Define: a) nuclear fusion. b) Nuclear fission.
- iv) Find the energy released when two deuterium nuclei fuse to form alpha particle.

[Given: atomic mass of deuterium =2.014102 a.m.u., mass of helium =4.002603 a.m.u.]

- v) An electron is moving along x-axis & its location is uncertain by 10⁻⁹ m. Determine the uncertainty in the x- component of its momentum.
- vi) Describe single crystal Bragg -spectrometer.

Page 2 of 2