[T]	ime: Th	ree Ho	urs]	[Marks:100]	
(1) All qu 2) Figu 3) Draw 5) Syml 5) Use 0	res to the neat debots have			
Q.1.	A)	(i)	Select the correct alternative Impulse is product of		12
		, ,	a. Force & mass	b. Mass & acceleration	
			c. Force & time	d. Force & displacement	
		(ii)	Poisson's ratio is a ratio of		
			a. lateral strain and longitudinal strain	b. Shear Stress and Shear Strain	96. 1. T. F.
			c. Volume Stress and Volume strain	d. None of the above	
		(iii)	If the focal length of Huygen's Ey length of field lens is		
			a. 12cm	b. 24cm	
		(iv)	c. 36cm A ray of light reflected at the bour medium undergoes a phase change		
		8	a.30	b. 180	
		723	c. 90	d. 45	
		(v)	First law of thermodynamics is sta	atement of?	
			a. Conservation of momentum c. Conservation of Angular Momentum Change in internal angray in a the	b. Conservation of energy d. Conservation of Mass	
.0		(vi)	Change in internal energy in a the depends	imodynamic process	
WAY.			a. Only on initial and final temperature	b. Upon path taken	
7.4.2.8 3.8.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3			c. Is always positive	d. Is always negative	
	B)	(i) (ii) (iii)	Answer in one sentence What is turbulent flow? State the two types of the defects in the work what is critical pressure?	in a lens.	3
	C)	(i)	Fill in the blanks In equation of continuity product	of mass and valocity is	5
	W. O. O. A.	A 0 (V)	9) 6 / 2 /	·	
		(ii)	Along the axis of the pipe velocit	y of the fluid is	
		(iii)	The radius of the n th dark ring is of the natural numbers	*	
		(iv)	A single lens cannot form an imag aberration.	ge free from	

Page 1 of 3

		(v)	Isotherm is P-V diagram at constant	300
Q. 2	A)	(i)	Attempt ANY ONE Derive an expression for the moment of couple required to twist	7 8
		(1)	one end of the cylinder when other end is fixed for hollow cylinder	
		(ii)	For a homogeneous isotropic material find the relation between young's modulus Y bulk modulus K and Poisson's ratio σ .	3000
	B)		Attempt ANY ONE	8
		(i)	Derive Poiseuille's equation for liquid flowing in narrow tube. State the assumptions made.	
		(ii)	a) As an application of Bernoulli's theorem, write a note on Venturimeter	25 A
			b) On the basis of Bernoulli's theorem, explain the upward lift to aero plane	
	C)		Attempt ANY ONE	4
		(i)	Young's modulus of a steel wire is 2.032x10 ¹¹ N/m ² & its modulus of rigidity is 0.7x10 ¹¹ N/m ² find its Poisson's ratio.	
		(ii)	In Atwood's machine, a string passing over frictionless, massless pulley has 10 kg block tied to one end and 12 kg block	
			tied to the other. Find the acceleration and tension in the string.	
Q. 3	A)	85	Attempt ANY ONE	8
		(i)	Derive the expression for optical path difference between two rays in the case of interference due to reflected light in the thin films.	
		(ii)	Describe Newton's rings experiment and explain with necessary theory the formation of Newton's rings.	
	B)	(0, 4, 0)x	Attempt ANY ONE	8
		(i)	Derive an expression for the equivalent focal length for a system having two thin lenses separated by a finite distance.	
		(ii)	What is chromatic aberration? Derive the expression for the axial chromatic aberration.	
12.25 2.50	C)	A A PO	Attempt ANY ONE	4
		(i)	In the wedge shaped film of refractive index 1.57, fringe spacing is 1mm and wavelength of light used is 5893 <i>AU</i> . Calculate the angle of wedge of film.	
		(ii)	Two convex lenses of focal lengths 10 cm and 20 cm are placed	
			5cm apart in air .Find the equivalent focal power of lens and its positions of principal points.	
Q. 4	A)	(i)	Attempt ANY ONE With the corrections to pressure and volume, arrive at Van der	8
	32.000		Waals equation.	
A A POPE		(ii)	Show that for adiabatic process, $PV^{\gamma} = constant$. A gas occupies 1000 cc of volume at 4 atm pressure. It expands	
	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7		adiabatically to 1190 cc and the resulting pressure is 3 atm. Calculate γ .	
X 45 6		Ť	Page 2 of 3	

B)

B)		Attempt ANY ONE	8
	(i)	Show that for isothermal process work done, W is	450 p
		$W = RT \times 2.303 \log_{10} \frac{P_1}{P_2}$	
		A perfect gas at room temperature having volume of 4m ³ and initial pressure of 2 atm undergoes isothermal expansion to a volume of 5 m ³ . Calculate the work done by the gas.	3, 3, 3, 3
	(ii)	Show that for perfect gas, $C_P - C_V = R$	65
C)		Attempt ANY ONE	4
,	(i)	A quantity of air at 30°C and at atmospheric pressure is suddenly compressed to half of its original volume. Find the	
	(ii)	final temperature and pressure of the gas. ($\gamma = 1.4$) An adiabatic container of volume V has an adiabatic partition making to compartments of volume V_1 and V_2 . These two compartments have an ideal gas of moles n_1 and n_2 at temperatures T_1 and T_2 , pressure P_1 and P_2 . If the partition is removed, what are the equilibrium temperature and pressure of the composite system?	
Q. 5	(*)	Attempt ANY FOUR	20
	(i)	Write short note on stream line flow and turbulent flow	
	(ii)	Write short note on limiting value of Poisson's ratio.	
	(iii)	Write a short note on Ramsden's eyepiece.	
	(iv)	State the various methods of reducing spherical aberration.	
	(v)	State and explain zeroth law of thermodynamics.	
	(vi)	Explain how the work done in a thermodynamic process is a path dependent function.	
	7000		