QP Code: 31001

(3)	HRS)
-----	------

[TOTAL MARKS 100

			0 - Y -
Note:	,	All questions are compulsory. Use of non- programmable calculator is allowed.	3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	,	Draw figures wherever necessary.	0,00
		Symbols have their usual meanings unless mentioned.	
Q.1	•	Select the correct option	12
۷	i)	If half life of Au is 2.7days. Then its decay constant is	VA A
		(a) $2.73 \times 10^{-6} \text{ s}^{-1}$ (b) 0.256 s^{-1} (c) $1.08 \times 10^{-6} \text{ s}^{-1}$ (d) None of these	
	ii)	As the number of nucleons in nuclei goes on increasing, the binding energy per nucleon	SON SON
		(a) first increases and then decreases (b) remains constant	Ç'
		(c) decreases continuously . (d) increases continuously.	
	iii)		
		(a) same mass number but different atomic number	
		(b) same atomic number but different mass number	
		(c) same mass number and same atomic number	
		(d) same density but different atomic number.	
	iv)		
		(a) Pair formation (b) Pair annihilation	
	,	(c) Both (a) and (b) (d) None of these	
	v)	The values of X and Y in the reaction ${}^{16}_{8}O + {}^{2}_{1}H \rightarrow {}^{X}_{8}O + {}^{3}_{Y}H$ are:	
		(a) $X=16$, $Y=1$ (b) $X=15$, $Y=2$	
	:\	(c) $X=15$, $Y=1$ (d) None of these	
	vi)	As the temperature of blackbody raised the maximum intensity of radiation emitted is displaced towards—theside.	
	02	(a) higher wavelength (b) lower wavelength	
		(c) lower frequency (d) None of these.	
77.75	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
	(B)	Answer in one sentence :	03
	i)	What is Binding Energy of a nucleus?	
	ii)	State Bragg's law.	
200	iii)	What is Nuclear Fission?	
			0.5
S A S	(C)	5, 9, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70	05
	i)	One a.m.u. is equivalent toMeV.	
	ii)	If Q value of nuclear reaction is negative, the reaction is called	
300	iii)	Laue pattern is obtained due to of X-rays at lattice planes.	
300	iv)	X > X - X - X - X - X - X - X - X - X -	
	50	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
	v)	In Compton scattering the change in wave length is maximum if angle of	
YE 3	90 (7	scattering is	

		QP Code : 31003	
		2	Y S.
Q.2	(A)	Attempt any one	08
	i)	State law of radioactive disintegration and obtain a relation governing the	
		radioactive decay, Define the terms decay constant, half life and mean life.	
	ii)	Define packing fraction .Draw the graph showing the variation of packing	
		fraction with the mass number and state the inferences drawn from the graph.	
	(B)	Attempt any one	08
	i)	State law of successive disintegration and derive the expression for the	O'V
		number of atoms in first two daughter elements.	S D
	ii)	Derive an expression to estimate the nuclear radius from Rutherford's α -scattering experiment.	
			20,
	(0)		
	(C)	Attempt any one	04
	i)	A charcoal sample from an ancient fire-pit showed a C ¹⁴ activity of 11.3 counts per gm per min. The absolute activity of C ¹⁴ in a living tree is around 15.3 counts per gm per min. Estimate the age of the	
	::1	charcoal sample. Half life of C ¹⁴ is 5730 years. Estimate the binding energy per nucleon of helium nucleus ₂ He ⁴ .	
	ii)	Given: M(He) = 4.002643 amu $m_p = 1.007825$ amu	
		$m_n = 1.008665$ amu $m_p = 1.007823$ amu $m_p = 1.008665$ amu	
Q.3	(A)	Attempt any one	08
	i)	With the help of neat diagram, explain the construction and working of Geiger - Mueller counter.	
	ii)	Derive the equation of the Q-value of the nuclear reaction.	
	20		
	(B)	Attempt any one	08
S	i) 🤇	Explain the principle, construction and working of a Proportional	
V 1 9		counter with the help of neat diagram.	
	ii)	State and explain the conservation laws of nuclear reactions.	
25.50	(C)	Attempt any one	04
80.5	i)	Determine the Q-value of the nuclear reaction $_7N^{14}$ (α ,p) $_8O^{17}$.	
N. A.		Given : M($_{7}N^{14}$) = 14.00753amu, M($_{8}O^{17}$) = 17.0045amu, m_{α} = 4.00387 amu, m_{p} = 1.00814 amu, 1 amu = 931.5 MeV	
	ii)	An α -particle loses all of its energy in a gas and produces 2.25 x 10 ⁵	
	NA T	ion-pairs .If energy required to create one ion-pair is 32eV, What is the energy	
		of an α - particle.	
Q.4	(A)	Attempt any one	08
	i)	What is Compton effect? Derive an expression for Compton shift in	
		wavelength of the photon.	
	ii)	Describe Davisson-Germer experiment to verify the dual nature of light.	

[Turn over

QP Code: 31001

3

(B)	Attempt any one	08
i)	Discuss the distribution of energy in the spectrum of black body	
	radiation.	100 A
ii)	Describe how X-rays are produced using Coolidge tube.	2,3

(C) Attempt any one

04

- i) Calculate the wavelength of the matter waves associated with a ball of mass 6.62×10^{-2} kg and moving with a velocity 2m/s. Planck's constant h = 6.62×10^{-34} J-s.
- ii) Calculate the critical voltage required to stimulate the emission of characteristics lines of K-series in tungsten, if K absorption edge is 1AU. Planck's constant h = 6.62 x 10⁻³⁴ J-s.
- Q.5 Attempt any four

20

- i) Write short note on Carbon dating.
- ii) Discuss in brief the stability of nuclei.
- iii) Find the shortest wavelength of X rays emitted when electrons are accelerated through a potential difference of 35 keV in an X ray tube
- iv) Describe the construction & principle of working of gas-filled detector.
- v) What do you understand by Gravitational Red shift?
- vi) State and explain De Broglie hypothesis. State properties of matter waves.
