O. P. Code: 51415

(12)

(8)

(12)

Duration $2\frac{1}{2}$ Hrs Marks: 75

- (1) All questions are compulsory
 - (2) Figures to the right indicate marks.
- 1. (a) Attempt any One question:
 - (8)(i) State and prove Bessels Inequality.
 - (ii) Let f be a continuous real valued periodic function, defined on $[-\pi, \pi]$ and having period 2π . If $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ is the Fourier series of f on $[-\pi, \pi]$ then

prove that : $\sigma_n(x) \longrightarrow f(x)$ as $n \longrightarrow \infty$, where $\sigma_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(x)$, S_k is the k^{th} partial sum of the Fourier series of f.

- (b) Attempt any Two questions:
 - (i) Is the series $\sum_{n=1}^{\infty} \left[\frac{\cos nx + \sin nx}{n^{\frac{1}{2}}} \right]$ the Fourier series of a function $f \in C[-\pi, \pi]$?
 - (ii) Let $f \in C[-\pi, \pi]$ and f has Fourier series $\frac{a_0}{2} + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$, show that $\sigma_n(t) = \frac{a_0}{2} + \sum_{k=1}^{n-1} \left(1 - \frac{k}{n}\right) \left(a_k \cos kt + b_k \sin kt\right)$
 - (iii) Apply Parseval's equality to the function f(x) = x over $[-\pi, \pi]$ and deduce that $\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$
 - (iv) Define Fejer's Kernel $K_n(t)$. Prove that $K_n(t) = \frac{\sin^2(\frac{nt}{2})}{2n\sin^2\frac{t}{2}} \infty < t < \infty$, $t \neq 2k\pi, k \in \mathbb{Z}, t \in \mathbb{R}$
- (a) Attempt any One from the following:
 - (i) Suppose K is a compact subset of \mathbb{R}^n . Show that K is sequentially compact.
 - (ii) Show that a compact subset of (\mathbb{R}^n, d) where d Euclidean, is closed and bounded. Give an example to show that a closed and bounded subset of a metric space is not compact.
 - (b) Attempt any Two from the following:
 - (i) Prove that a subset of a discrete metric space is compact if and only if it is finite.
 - (ii) (X,d) is a metric space and (x_n) is a sequence in X such that (x_n) converges to some point $p \in X$. If $S = \{x_n : n \in \mathbb{N}\} \cup \{p\}$ then show that S is compact by using the definition of compactness.
 - (iii) Let A, B be compact subsets of (\mathbb{R}, d) , distance d being usual. Show that $A \times B$ is a compact subset of (\mathbb{R}^2, d') where d' is the Euclidean distance.

Q. P. Code: 51415

- (iv) Consider the metric space (\mathbb{R}, d) , where d is the usual distance. Show that $\{(\frac{1}{n}, 1) : n \in \mathbb{N}\}$ is an open cover of (0, 1). Is (0, 1) compact? Justify your answer.
- 3. (a) Attempt any One of the following:

(8)

- (i) Show that a subset $E \subset \mathbb{R}$ (with respect to usual metric of \mathbb{R}) is connected if and only if E is an interval.
- (ii) Show that a metric space (X, d) is connected if and only if every continuous function $f: X \longrightarrow \{1, -1\}$ is constant.
- (b) Attempt any Two questions:

(12)

- (i) Prove that a metric space (X, d) is connected if and only if for each nonempty proper subset A of $X, \overline{A} \cap \overline{X} \setminus A \neq \emptyset$ i.e. $\partial A \neq \emptyset$
- (ii) Let (X, d) be a discrete metric space. If A is a X having more than one element, show that A is disconnected.
- (iii) If A and B are two connected subsets of a metric space (X, d) such that $A \cap B \neq \emptyset$ then prove that $A \cup B$ is connected.
- (iv) If (X, d) is a connected metric space and (Y, d') is any metric space where Y is a finite set, then show that any continuous function $f: X \longrightarrow Y$ is constant.
- 4. Attempt any Three of the following:

(15)

- (a) $f(x) = \pi + x$, $-\pi \le x \le \pi$. Find the Fourier series of f. Assuming that the Fourier series of f converges to f(x) at $x = \frac{\pi}{2}$, find the sum $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots$.
- (b) If the series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges uniformly on $[-\pi, \pi]$ to f, prove that the Fourier series of f is $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$.
- (c) If A, B are disjoint non-empty subsets of $(\mathbb{R}^n, d), d$ being Euclidean distance and A is closed , B is compact then show that d(A, B) > 0.
- (d) If $\{F_n\}$ is a family of closed subsets of \mathbb{R}^n (distance being Euclidean). If F_{n_0} is bounded for some n_0 , and $\bigcap_{n\in\mathbb{N}} F_n \neq \emptyset$ then prove that $\bigcap_{n\in\mathbb{N}} F_n$ is compact.
- (e) Prove that a convex subset of a normed linear space is path connected.
- (f) Prove or disprove: The subset $\{(x,y) \in \mathbb{R}^2 : y \neq 0\}$ of (\mathbb{R}^2,d) (d being Euclidean distance) is connected.