Q. P. Code: 51411

Duration $2\frac{1}{2}$ Hrs Marks: 75

- N.B. : (1) All questions are compulsory
 - (2) Figures to the right indicate marks.
- 1. (a) Attempt any One from the following:

(8)

- (i) State and prove Cantor's Intersection Theorem for a metric space (X, d).
- (ii) Let $f:[a,b] \to \mathbb{R}$ be continuous. If f(a) and f(b) have opposite signs then using Nested Intervals Theorem, prove that there exists $c \in (a,b)$ such that f(c) = 0.
- (b) Attempt any Two from the following:

(12)

- (i) Let (X, d) be a complete metric space and (Y, d_Y) is a subspace of (X, d). If (Y, d_Y) is complete then show that Y is a closed subset of X.
- (ii) Prove that a finite metric space is complete.
- (iii) Show that [0, 1] is uncountable.
- (iv) Prove that the set of real numbers \mathbb{R} is complete with respect to the usual distance.
- 2. (a) Attempt any One from the following:

(8)

- (i) Let $f:(X,d) \longrightarrow (Y,d')$ be a function. Show that f is continuous at $p \in X$ if and only if for each sequence (x_n) in X converging to p, the sequence $(f(x_n))$ converges to f(p) in Y.
- (ii) Let (X, d) and (Y, d') be metric spaces. If (X, d) is compact and $f: X \longrightarrow Y$ is a continuous function, then show that f(X) is a compact subset of Y.
- (b) Attempt any Two from the following:

(12)

- (i) Let (X,d) and (Y,d) be metric spaces then show that $f:X\longrightarrow Y$ is continuous if and only if $f^{-1}(B^{\circ})\subseteq (f^{-1}(B))^{\circ}$, for each subset B of Y.
- (ii) Let (X, d) and (Y, d') be metric spaces and $f, g: X \longrightarrow Y$ be continuous on X. Show that $\{x \in X : f(x) = g(x)\}$ is a closed subset of X.
- (iii) Show that the identity function $i: (\mathbb{R}, d) \longrightarrow (\mathbb{R}, d_1), i(x) = x \ \forall x \in \mathbb{R}$ is discontinuous everywhere in \mathbb{R} where d is the usual distance and d_1 is the discrete metric.
- (iv) Let (X, d) and (Y, d') be metric spaces and $D \subseteq X$ be a dense subset of X. If $f: X \longrightarrow Y$ is a continuous onto map, show that f(D) is dense in Y.
- 3. (a) Attempt any One from the following:

(8)

- (i) Prove that a subset E of \mathbb{R} is connected if and only if it is an interval. (Distance in \mathbb{R} being usual)
- (ii) Prove that a metric space is connected if and only if every continuous function from X to $\{1, -1\}$ is a constant function.
- (b) Attempt any Two from the following:

(12)

- (i) If (X, d) is a metric space and A, B are connected subsets of X such that $A \cap B \neq \emptyset$ then prove that $A \cup B$ is a connected set.
- (ii) Prove that a convex subset of a normed linear space is path connected.

Page1

Q. P. Code: 51411

- (iii) Prove or disprove: The subset $\{(x,y)\in\mathbb{R}^2:y\neq0\}$ of (\mathbb{R}^2,d) (d being Euclidean distance) is connected.
- (iv) If (X, d) be a connected metric space and $f: X \longrightarrow \mathbb{Z}$ (distance in \mathbb{Z} being usual distance) is a continuous function then prove that f is a constant function.
- 4. Attempt any Three from the following:

- (15)
- (a) Use the intermediate value property to show that there is a square whose diagonal has length between r and 2r and has area equal to half the area of the circle of radius r.
- (b) Check if Cantor's Theorem is applicable in the following examples. Also, find $\bigcap_{n\in\mathbb{N}} F_n$ in each case, where (F_n) is a sequence of subsets of \mathbb{R} and the distance in \mathbb{R} is usual.
 - (I) $F_n = [n, \infty)$
 - (II) $F_n = (0, \frac{1}{n})$
- (c) If $T: \left[0, \frac{1}{3}\right] \longrightarrow \left[0, \frac{1}{3}\right]$ is defined as $T(x) = x^2$, then show that T is a contraction map on $\left[0, \frac{1}{3}\right]$. Does T have any fixed points? If yes, how many? Justify your answer.
- (d) Discuss the uniform continuity of $f:[1,\infty) \to \mathbb{R}$ (distance being usual), defined by $f(x) = \frac{1}{x}$.
- (e) Prove or disprove: If A° and ∂A are connected then A is connected.
- (f) Show that $E = \{(x,y) \in \mathbb{R}^2 : x > 0, x^2 y^2 = 1\}$ is path connected.