QP CODE: 25880

REVISED COURSE

[Max Marks:75]

Duration: $2^{1}/_{2}$ Hours

N.B. 1. All questions are compulsory.

- **2.**From Question 1,2 and 3, Attempt any one from part(a) and any two from part(b).
- 3. From Question 4, Attempt any THREE
- **4.** Figures to the right indicate marks for the respective parts.
- Q.1 a i Let $\{f_n\}$ be a sequence of Riemann integrable functions on [a, b]. If the series (8) $\sum_{n=1}^{\infty} f_n$ of functions converges uniformly to f on [a, b]. Show that f is Riemann integrable on [a, b] and $\int_a^b (\sum_{n=1}^{\infty} f_n(x)) dx = \sum_{n=1}^{\infty} \int_a^b f_n(x) dx$.
 - ii Let $\{f_n\}$ be a sequence of real valued functions defined on a non-empty subset S of R. Show that $\{f_n\}$ converges uniformly to a function f if and only if for given $\epsilon > 0 \exists$ a positive integer n_0 such that $|f_n(x) f_m(x)| < \epsilon$, $\forall m, n \geq n_0$ and $\forall x \in S$.
 - b i State and prove Weierstrass M test for uniform convergence of series of (12) functions.
 - ii By integrating a suitable power series over an interval [0,1], show that $\frac{1}{2} = \sum_{n=0}^{\infty} \frac{1}{n!(n+2)}.$
 - iii Discuss the uniform convergence of the sequence of functions $\{f_n\}$ on [0, 1], where $f_n: [0,1] \to \mathbb{R}$ is defined by $f_n(x) = nx^n(1-x)$.
 - iv Discuss the uniform convergence of the series of functions $\sum_{n=1}^{\infty} \frac{x}{n(n+1)}$; . $x \in \mathbb{R}$
- Q.2 a i If $z_0 \in \mathbb{C}$ then show that $\lim_{z \to z_0} f(z) = \infty$ if and only if $\lim_{z \to z_0} \frac{1}{f(z)} = 0$. Also using definition of differentiability, show that if $f'(z_0)$, $g'(f(z_0))$ exist then prove that the function F(z) = g(f(z)) has a derivative at z_0 and $F'(z_0) = g'(f(z_0))f'(z_0)$.
 - ii $\Omega \subset \mathbb{C}$ is a domain in \mathbb{C} . If $u, v : \Omega \to \mathbb{R}$ are such that u_x, u_y, v_x, v_y exist ,satisfy Cauchy Riemann equations and u_x, u_y, v_x, v_y are continuous on Ω , prove that f(z) = u(x, y) + iv(x, y) is analytic in Ω .
 - b i Using the definition, discuss differentiability of the function f where $f(z) = \begin{cases} \overline{z}^2/z, & z \neq 0 \\ 0, & z = 0 \end{cases}$ at (0,0)
 - ii f is analytic on a given domain D. If |f(z)| is constant on D, show that f(z) must be constant throughout D.
 - Show that f(z) = u(x, y) + iv(x, y) is analytic in a domain D if and only if v is a harmonic conjugate of u.
 - Find the image of the set |z| = 6, $-\pi/4 \le \arg(z) \le \frac{3\pi}{4}$ under the reciprocal map $w = \frac{1}{z}$ in the extended complex plane . .

2

QP CODE: 25880

- Q.3 a i Let f be analytic everywhere inside and on a simple closed contour C, taken in (8) the positive sense. If z_0 is any point interior to C, then prove that $f(z_0) = \frac{i}{2\pi i} \int_C \frac{f(z)dz}{z-z_0}$
 - ii Let C be a simple closed curve in the interior of the disc of convergence of the power series $S(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$, then prove that in the interior of the disk of convergence $S'(z) = \sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}$.
 - b i If a function f is analytic at a given point then show that its derivatives of all (12) orders are analytic at that point too. Further suppose that a function f is analytic inside and on a positively oriented circle C_R , centered at z_0 and with radius R and if M_R denotes the maximum value of |f(z)| on C_R then show that $|f^n(z_0)| \le \frac{n!M_R}{R^n}$, n = 1,2,3,...
 - ii If z_1 is a point inside the circle of convergence $|z z_0| = R$ of a power series $\sum_{n=0}^{\infty} a_n (z z_0)^n$ then show that the series must be uniformly convergent in the closed disk $|z z_0| \le R_1$, where $R_1 = |z_1 z_0|$.
 - iii Compute the residue of $f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$ at its simple poles.
 - iv State Laurent's Theorem. Expand $f(z) = \frac{1}{z(z-1)}$ as a Laurent series for the annular domains: 0 < |z-1| < 1, 1 < |z-1|.
- Q.4 i If a real power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence r, then show that it (15) converges uniformly on [-s, s] where $0 \le s < r$.
 - Show that the sequence of functions $\{\frac{nx}{nx^2+1}\}$ converges uniformly on $[a, \infty)$ where $0 < a < \infty$
 - iii Test differentiability of the function f(z) = z|z| at (0,0).
 - iv Construct a linear fractional transformation that maps 0, i, ∞ to -1, 0, 1 respectively.
 - V Evaluate $\int_C \frac{z-1}{(z+1)^2(z-2)} dz$, where C is the circle |z-i|=2.
 - Vi Show that $\left| \int_C \frac{e^z}{z+1} dz \right| \le \frac{8\pi e^4}{3}$ where |z| = 4.
