of/10/18

Q. P. Code: 27452

$2 \frac{1}{2}$ Hours]	$\frac{1}{2}$ Hours] [Total Marks: 75]	
N.B.: (1) All questions are compulsory.		
(2) Figures to the right indicate marks for respe	ctive subquestions.	
1. (a) Answer any ONE		
i. State and prove the fundamental theorem of	groups.	(8
ii. State and prove the Cayley's theorem for fini	O. S. D. P. M. D. W. B. B. O. P. W. W. W.	(8
(b) Answer any TWO		
i. Define kernel of a homomorphism $f:G\to G$ of G and it is a normal subgroup of G .	Prove that it is a subgroup	(6
ii. Prove that every subgroup of index 2 of a group otherwise prove that A_n is a normal subgroup		(6
iii. If H is a subgroup of group G such that $x^2 \in$ that H is a normal subgroup of G and G/H i	H for every $x \in G$ then prove	(6)
iv. Prove that there are only 2 groups of order 4		(6)
2. (a) Answer any ONE		
i. Show that characteristic of an integral domai can be said about the characteristic of field?		(8)
ii. Let $f: R \to R^I$ be ring homomorphism. Show (p) If I is an ideal of R and f is onto then I ideal of R^I .	that Carlo	(8)
(q) If J is an ideal of R' , then $f^{-1}(J) = \{x \in R\}$	$R:f(x)\in J\}$ is an ideal of	
(b) Answer any TWO		
i. Show that finite integral domain is a field.	57	(6)
ii. Let R be a finite ring with unity. Show that is either a zero divisor or a unit. Is the above	every non zero element of R ve statement true for infinite	(6)
commutative ring? Justify. iii. Show that the only non-zero ring homomorp	hism $f: \mathbb{Z} \to \mathbb{Z}$ is identity	(6)
homomorphism. iv. Show that there is no integral domain containing	ing 6 elements.	(6)
(a) Answer any ONE		(0)
Some Enclidean domain.	Deliler dessin	(8)
Show that the ring of Gaussian integers $\mathbb{Z}[i]$, is Define maximal ideal of a ring. Show that an ideal	leal M in a commutative ring	(8)
R is a maximal ideal if and only if R/M is a fi	eid. [P.T.O.]	

Q. P. Code: 27452

	b) Answer any TWO	200
	i. Show that a nonzero ideal P of a commutative ring R is prime if and only	6
	if $\frac{R}{P}$ is an integral domain	
	ii. Show that the only maximal ideals in $\mathbb{C}[x]$ are $(x - \alpha)$ for $\alpha \in \mathbb{C}$.	(6
	iii. Show that an ideal I in \mathbb{Z} is maximal if and only if $I = p\mathbb{Z}$ for some prime integer p .	(6
	iv. Show that ideal $I = \{f(x) \in \mathbb{Z}[x] / 2 f(0) \}$ is maximal in $\mathbb{Z}[x]$.	(6)
4.	nswer any THREE	
	a) If H is the only subgroup of G of the given order then prove that H is a normal subgroup of G .	(5)
	b) If a group G is a direct product of two cyclic groups each of order 3 then prove that G is not a cyclic group.	(5)
	c) Define zero divisor and unit element in ring R . Show that every element of \mathbb{Z}_n is either a zero divisor or an unit.	(5)
	d) Show that if $I_1 \subseteq I_2 \subseteq \cdots$ are ideals of R , then $\bigcup_{n=1}^{\infty} I_n$ is an ideal of R .	(5)
	e) Show that the ring $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{7}]$ are not isomorphic.	(5)
	f) Show that 2, 5 are not prime in $\mathbb{Z}[i]$	(5)
		()

Page 2