of/10/18 Q. P. Code: 27452 | $2 \frac{1}{2}$ Hours] | $\frac{1}{2}$ Hours] [Total Marks: 75] | | |---|--|-----| | N.B.: (1) All questions are compulsory. | | | | (2) Figures to the right indicate marks for respe | ctive subquestions. | | | 1. (a) Answer any ONE | | | | i. State and prove the fundamental theorem of | groups. | (8 | | ii. State and prove the Cayley's theorem for fini | O. S. D. P. M. D. W. B. B. O. P. W. W. W. | (8 | | (b) Answer any TWO | | | | i. Define kernel of a homomorphism $f:G\to G$ of G and it is a normal subgroup of G . | Prove that it is a subgroup | (6 | | ii. Prove that every subgroup of index 2 of a group otherwise prove that A_n is a normal subgroup | | (6 | | iii. If H is a subgroup of group G such that $x^2 \in$ that H is a normal subgroup of G and G/H i | H for every $x \in G$ then prove | (6) | | iv. Prove that there are only 2 groups of order 4 | | (6) | | 2. (a) Answer any ONE | | | | i. Show that characteristic of an integral domai can be said about the characteristic of field? | | (8) | | ii. Let $f: R \to R^I$ be ring homomorphism. Show (p) If I is an ideal of R and f is onto then I ideal of R^I . | that Carlo | (8) | | (q) If J is an ideal of R' , then $f^{-1}(J) = \{x \in R\}$ | $R:f(x)\in J\}$ is an ideal of | | | (b) Answer any TWO | | | | i. Show that finite integral domain is a field. | 57 | (6) | | ii. Let R be a finite ring with unity. Show that is either a zero divisor or a unit. Is the above | every non zero element of R ve statement true for infinite | (6) | | commutative ring? Justify. iii. Show that the only non-zero ring homomorp | hism $f: \mathbb{Z} \to \mathbb{Z}$ is identity | (6) | | homomorphism. iv. Show that there is no integral domain containing | ing 6 elements. | (6) | | (a) Answer any ONE | | (0) | | Some Enclidean domain. | Deliler dessin | (8) | | Show that the ring of Gaussian integers $\mathbb{Z}[i]$, is Define maximal ideal of a ring. Show that an ideal | leal M in a commutative ring | (8) | | R is a maximal ideal if and only if R/M is a fi | eid.
[P.T.O.] | | Q. P. Code: 27452 | | b) Answer any TWO | 200 | |----|--|-----| | | i. Show that a nonzero ideal P of a commutative ring R is prime if and only | 6 | | | if $\frac{R}{P}$ is an integral domain | | | | ii. Show that the only maximal ideals in $\mathbb{C}[x]$ are $(x - \alpha)$ for $\alpha \in \mathbb{C}$. | (6 | | | iii. Show that an ideal I in \mathbb{Z} is maximal if and only if $I = p\mathbb{Z}$ for some prime integer p . | (6 | | | iv. Show that ideal $I = \{f(x) \in \mathbb{Z}[x] / 2 f(0) \}$ is maximal in $\mathbb{Z}[x]$. | (6) | | 4. | nswer any THREE | | | | a) If H is the only subgroup of G of the given order then prove that H is a normal subgroup of G . | (5) | | | b) If a group G is a direct product of two cyclic groups each of order 3 then prove that G is not a cyclic group. | (5) | | | c) Define zero divisor and unit element in ring R . Show that every element of \mathbb{Z}_n is either a zero divisor or an unit. | (5) | | | d) Show that if $I_1 \subseteq I_2 \subseteq \cdots$ are ideals of R , then $\bigcup_{n=1}^{\infty} I_n$ is an ideal of R . | (5) | | | e) Show that the ring $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{7}]$ are not isomorphic. | (5) | | | f) Show that 2, 5 are not prime in $\mathbb{Z}[i]$ | (5) | | | | () | Page 2