Duration: 3 Hrs Marks: 100

- N.B. : (1) All questions are compulsory.
 - (2) Figures to the right indicate marks.
- 1. Choose the correct alternative for each of the following:

(20)

- (i) If $f:(\mathbb{R},d) \longrightarrow (\mathbb{R},d)$, with d as the usual distance, is a continuous function then $f^{-1}((0,\infty))$ is
 - (a) a closed subset of \mathbb{R} .

(c) an open subset of \mathbb{R}

(b) a bounded subset of \mathbb{R} .

- (d) none of the above is true.
- (ii) Let (X, d) be a discrete metric space and (Y, d') be any metric space. If $f: X \longrightarrow Y$, then f is
 - (a) an uniformly continuous function on X.
 - (b) a bounded function on X.
 - (c) continuous but not uniformly continuous function on X.
 - (d) none of the above is true.
- (iii) Consider the metrics d and d_1 on \mathbb{N} , where d is the induced distance from \mathbb{R} with the usual metric and $d_1(m,n) = \left|\frac{1}{m} \frac{1}{n}\right|$ for $m,n \in \mathbb{N}$. Let $i: \mathbb{N} \longrightarrow \mathbb{N}$ denote the identity map on \mathbb{N} . Then
 - (a) $i:(\mathbb{N},d)\longrightarrow(\mathbb{N},d_1)$ is continuous but $i:(\mathbb{N},d_1)\longrightarrow(\mathbb{N},d)$ is not continuous.
 - (b) $i: (\mathbb{N}, d) \longrightarrow (\mathbb{N}, d_1)$ is not continuous.
 - (c) $i: (\mathbb{N}, d_1) \longrightarrow (\mathbb{N}, d)$ is not continuous.
 - (d) None of the above.
- (iv) In (\mathbb{R}^2, d) where d is the Euclidean distance, the following set is not connected.
 - (a) $\mathbb{R}^2 \setminus \mathbb{Q} \times \mathbb{Q}$.

(c) $\mathbb{R}^2 \setminus \{(x,y) : y = 0\}$

(b) $\mathbb{R}^2 \setminus \{(0,0)\}$

- (d) None of the above.
- (v) Let A and B be connected subsets in a metric space (X, d) and $A \subseteq C \subseteq B$ Then,
 - (a) C is connected.

(c) \overline{C} is connected.

(b) C° is connected.

- (d) $C \cap \overline{A}$ is connected.
- (vi) In \mathbb{R}^2 with the Euclidean metric, which of the following sets is convex?
 - (a) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$
- (c) $\{(x,y) \in \mathbb{R}^2 : y > 0\}$

(b) $\{(x,y) \in \mathbb{R}^2 : xy = 0\}$

- (d) None of these.
- (vii) Let (X,d) be a connected metric space and $f:X\longrightarrow \mathbb{Z}$ be a continuous map. Then, f is
 - (a) an onto function.

(c) a bijective function.

(b) a one-one function.

(d) a constant function.

1 of 4

- (viii) Let $f_n(x) = \sin nx$ for $x \in \mathbb{R}$. and $g_n(x) = \frac{f_n(x)}{n} \ \forall x \in \mathbb{R}$. Then,
 - (a) $\{f_n\}$ and $\{g_n\}$ are uniformly convergent on \mathbb{R} .
 - (b) $\{f_n\}$ and $\{g_n\}$ are not pointwise convergent on \mathbb{R} .
 - (c) $\{g_n\}$ is uniformly convergent on \mathbb{R} but $\{f_n\}$ is not.
 - (d) $\{f_n\}$ is uniformly convergent on \mathbb{R} but $\{g_n\}$ is not.
 - (ix) The series $\sum_{n=1}^{\infty} \frac{x^n}{n+1}$ is
 - (a) uniformly convergent on \mathbb{R} .
 - (b) not uniformly convergent on [-a, a] where 0 < a < 1
 - (c) uniformly convergent on [-a, a] where 0 < a < 1.
 - (d) none of the above.
 - (x) If R is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n x^n$ then the radius of convergence

of
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2} c_n x^n \text{ is}$$

- (a) R^2
- (b) R

- (c) 0
- (d) ∞

(8)

(12)

- 2. (a) Attempt any One of the following:
 - (i) Let (X, d) and (Y, d') be metric spaces. If (X, d) is compact and $f: X \longrightarrow Y$ is a continuous function, then show that f(X) is a compact subset of Y.
 - (ii) Let $f:(X,d) \longrightarrow (Y,d')$ be a function. Prove that f is continuous on X if and only if for each open subset G of $Y, f^{-1}(G)$ is an open subset of X.
 - (b) Attempt any Two of the following:
 - (i) Let (X,d) and (Y,d') be metric spaces then show that $f:X\longrightarrow Y$ is continuous if and only if $f^{-1}(B^{\circ})\subseteq (f^{-1}(B))^{\circ}$, for each subset B of Y.
 - (ii) (X,d) is a metric space and $f:(X,d)\longrightarrow (X,d)$ is a function such that d(f(x),f(y))< d(x,y) whenever $x\neq y$. Let $S=\{x\in X: f(x)=x\}$. Prove that
 - (I) f is continuous on X.
 - (II) S has at most one element.
 - (iii) Let (X,d) and (Y,d') be metric spaces. When is $f:X\longrightarrow Y$ said to be uniformly continuous? Show that $f(x)=\frac{1}{(1+x^2)}$ is uniformly continuous on $\mathbb R$ (under the usual metric).
 - (iv) Let d_1 and d_2 be equivalent metrics on X and (Y,d) be any metric space. If $f:(X,d_1) \longrightarrow (Y,d)$ and $g:(Y,d) \longrightarrow (X,d_1)$ are continuous maps on X and Y respectively, then prove that $f:(X,d_2) \longrightarrow (Y,d)$ and $g:(Y,d) \longrightarrow (X,d_2)$ are also continuous.

2 of 4

- 3. (a) Attempt any One of the following:
 - (i) Define a connected metric space and prove that a metric space (X, d) is disconnected if and only if there exists a nonempty proper subset of X which is both open and closed in X.

(8)

(12)

(8)

(12)

(20)

- (ii) Prove that a metric space is connected if and only if every continuous function from X to $\{1, -1\}$ is a constant function.
- (b) Attempt any Two of the following:
 - (i) Let (X, d) be a metric space such that for any $x, y \in X$ there exists a connected subset A of X such that $x, y \in A$. Prove that X is connected.
 - (ii) Prove that in a normed linear space, an open ball B(x,r) is a convex set.
 - (iii) Prove that if a subset E of \mathbb{R} is connected then it is an interval. (Distance in \mathbb{R} being usual)
 - (iv) Let $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ and $B = \{(x,y) \in \mathbb{R}^2 : x = 1\}$ in (\mathbb{R}^2, d) where d is the Euclidean metric. Show that $A \cup B$ is a path connected set.
- 4. (a) Attempt any One of the following:
 - (i) Let $\{f_n\}$ be a sequence of real valued functions defined on a set $S \subseteq \mathbb{R}$ such that $f_n \longrightarrow f$ uniformly on S. If each f_n is bounded on S, then prove the following:
 - (I) f is bounded on S.
 - (II) There exists $\alpha \in \mathbb{R}^+$ such that $|f_n(x)| \leq \alpha$ for all $n \in \mathbb{N}$ and for all $x \in S$.
 - (ii) State and prove the Cauchy criterion for uniform convergence of a series of functions.
 - (b) Attempt any Two of the following:
 - (i) Find the pointwise limit of the sequence of functions $f_n : [0, \infty) \longrightarrow \mathbb{R}$, $f_n(x) = \begin{cases} x & \text{if } x \leq n \\ n & \text{if } x > n \end{cases}$. Is the pointwise limit bounded?
 - (ii) Find the radius of convergence and interval of convergence of the following power series:
 - (I) $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)^{\sqrt{n}}}$ (II) $\sum_{n=0}^{\infty} \frac{(x+3)^{n-1}}{n}$
 - (iii) Show that the series of functions $\sum_{n=1}^{\infty} \frac{e^{-nx}}{n}$ converges uniformly on $[a, \infty), a > 0$.
 - (iv) Consider the power series $\sum_{n=0}^{\infty} c_n x^n$ with integer coefficients. If $c_n \neq 0$ for infinitely many n, then show that its radius of convergence is at most 1.
- 5. Attempt any Four of the following:

(a) Prove or disprove: Continuous image of an open ball is an open ball.

3 of 4

65592

- (b) Let $f:[a,b] \to [a,b]$ be continuous on [a,b] and differentiable on (a,b). If $\exists c \in \mathbb{R}$ with 0 < c < 1 such that $|f'(x)| \le c$, $\forall x \in (a,b)$ then prove that f is a contraction of [a,b].
- (c) Let (X, d) be a connected metric space. If $f: X \longrightarrow (Y, d')$, where d' is a discrete metric, is a continuous function then prove that f is a constant function.
- (d) Prove that there does not exist a continuous onto function from the set $A = \{(x, y) \in \mathbb{R}^2 : x + y = 1\}$ to the set $B = \{(x, y) \in \mathbb{R}^2 : x^2 y^2 = 1\}$.
- (e) If $\sum_{n=1}^{\infty} |a_n| < \infty$, then prove that the series $\sum_{n=1}^{\infty} a_n \cos nx$ and $\sum_{n=1}^{\infty} a_n \sin nx$ converge on \mathbb{R} .
- (f) Let $f_n: [-1,1] \longrightarrow \mathbb{R}$, $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$. Given that $f_n \longrightarrow f$ uniformly on [-1,1] where f(x) = |x| for $x \in [-1,1]$. Find $\lim_{n \longrightarrow \infty} \int_{-1}^{1} f_n(x) dx$.

