REVISED COURSE

[Max Marks:75] Duration: $2^{1}/_{2}$ Hours

- **N.B. 1.** All questions are compulsory.
 - **2.**From Question 1,2 and 3, Attempt any one from part(a) and any two from part(b).
 - **3.** From Question 4, Attempt any THREE
 - **4.** Figures to the right indicate marks for the respective parts.
- Q.1 a i Let $< f_n >$ be sequence of differentiable real valued functions on [a, b] (8) such that $< f_n(x_0) >$ converges for some $x_0 \in (a,b)$ and $< f'_n >$ converges uniformly to function g on [a,b]. Prove that $< f_n >$ converges uniformly on [a,b] and if f is uniform limit of $< f_n >$ then f is differentiable on (a,b) and f' = g on (a,b).
 - ii State and prove Weierstrass M- test.
 - b i State and prove Cauchy's criterion for uniform convergence of the (12) sequence $\langle f_n \rangle$ of functions of real numbers.
 - ii Examine whether $\int_0^1 \sum_0^\infty x^n (1-2x^n) dx = \sum_0^\infty \int_0^1 x^n (1-2x^n) dx$. Is the series $\sum_0^\infty x^n (1-2x^n)$ uniformly convergent in [0, 1]? Justify.
 - Find M_n , where $M_n = Sup\left\{\frac{x}{(n+x^2)^2}: x \in [a,b]\right\}$, using Weierstrass M- test. Evaluate $\int_a^b \sum_{0}^\infty \frac{x}{(n+x^2)^2} dx$.
 - iv Let $f_n: [0,1] \to IR$ be given by $f_n(x) = x^n$. Let f be pointwise limit of $\langle f_n \rangle$. Is f continuous on [0,1]. Does $\langle f_n \rangle$ converge uniformly on [0,1]? Justify.
- Q.2 a i If a function f is continuous throughout a region R that is closed and (8) bounded then show that there exists a non-negative integer M such that $|f(z)| \le M \ \forall z \in R$. Also show that if $f'(z_0), g'(z_0)$ exist, $g'(z_0) \ne 0$, $f(z_0) = 0 = g(z_0)$ then $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$.
 - ii Let f(z) = u(x,y) + iv(x,y). If f'(z) exists at a point $z_0 = x_0 + iy_0$ then prove that the first order partial derivatives of u and v exist at (x_0, y_0) and satisfy Cauchy-Riemann equations $u_x = v_y$, $u_y = -v_x$. Show that the converse is not true. Also show that $f'(z) = (u_x)_{z=z_0} + i(v_x)_{z=z_0}$.
 - b i Using the definition, discuss differentiability of the function $f(z) = z^2$ (12) at any $z \in \mathbb{C}$.
 - ii f is analytic throughout on a given domain D. If |f(z)| is constant on D, show that f(z) must be constant on D.
 - iii If a function f(z) = u(x, y) + iv(x, y) is analytic in a domain D then show that its component functions u and v are harmonic in D.
 - Find the image of the given set under the reciprocal map $w = \frac{1}{z}$ in the extended complex plane : $\frac{1}{5} \le |z| \le 2$

- Q.3 State and prove Cauchy Integral Theorem. a i
 - (8) Suppose that a function f is analytic throughout a disk $|z-z_0| < R_0$, centered at z_0 and with radius R_0 . Then prove that f(z) has the power series representation $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, $|z - z_0| < R_0$ where $a_n = \frac{f^n(z_0)}{n!}.$
 - b i If a function f is analytic at a given point then show that its derivatives (12)of all orders are analytic at that point too. Further suppose that a function f is analytic inside and on a positively oriented circle C_R , centered at z_0 and with radius R and if M_R denotes the maximum value of |f(z)| on C_R then show that $|f^n(z_0)| \le \frac{n! M_R}{R^n}$, n = 1, 2, 3, ...
 - Prove that a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ represents a continuous ii function S(z) at each point inside its circle of convergence $|z - z_0| = r$.
 - Show that any singular point of the function $f(z) = \frac{e^z}{z^2 + \pi^2}$ is a pole. iii Further determine the order m of each pole and find the corresponding residue of f.
 - State Laurent's Theorem. For $f(z) = \frac{-1}{(z-1)(z-2)}$, write Laurent series iv expansion in the domains : |z| < 1, $2 < |z| < \infty$.
- Does the sequence $\langle f_n \rangle$, where $f_n(x) = \frac{nx}{1+nx^2}$ converges uniformly (15) **Q.4** on $[0, \infty)$? Justify.
 - For |x| < 1, show that $tan^{-1}x = \sum_{n=1}^{\infty} \frac{(-1)^n}{2.4.6...2n} \frac{x^{2n+1}}{2n+1}$. ii
 - iii Test differentiability of the function $f(z) = z \, Im \, z$ at (0,0).
 - Construct a linear fractional transformation that maps the points $i, \infty, 3$ to $\frac{1}{2}$, -1, 3 respectively.
 - Evaluate $\int_C \frac{1}{(z-z_0)^{n+1}} dz$ where C is the circle $|z-z_0| = r$, n is a non zero integer using a parameterisation of C.
 - Evaluate $\int_C \frac{\sin^6 z}{\left(z \frac{\pi}{2}\right)^3} dz$ where C : |z| = 2.