Q. P. Code: 05017

REVISED **COURSE**

[Max Marks:75] Duration: $2^{1}/_{2}$ Hours

N.B. 1. All questions are compulsory.

2. From Question 1,2 and 3, Attempt any one from part(a) and any two from

- 3. From Question 4, Attempt any THREE
- 4. Figures to the right indicate marks for the respective parts.
- Q.1 Let $\langle f_n \rangle$ be sequence of differentiable real valued functions on [a, b] (8) such that $\langle f_n(x_0) \rangle$ converges for some $x_0 \in (a,b)$ and $\langle f'_n \rangle$ converges uniformly to function g on [a,b]. Prove that $\langle f_n \rangle$ converges uniformly on [a, b] and if f is uniform limit of $\langle f_n \rangle$ then f is differentiable on (a, b) and f' = g on (a, b).
 - ii State and prove Weierstrass M-test.
 - State and prove Cauchy's criterion for uniform convergence of the (12) b i sequence $< f_n >$ of functions of real numbers.
 - Examine whether $\int_0^1 \sum_0^\infty x^n (1-2x^n) dx = \sum_0^\infty \int_0^1 x^n (1-2x^n) dx$. Is the series $\sum_0^\infty x^n (1-2x^n)$ uniformly convergent in [0, 1]? Justify
 - Find M_n , where $M_n = Sup\left\{\frac{x}{(n+x^2)^2}: x \in [a,b]\right\}$, using Weierstrass M- test. Evaluate $\int_a^b \sum_{0}^{\infty} \frac{x}{(n+x^2)^2} d\bar{x}$.
 - Let $f_n: [0, 1] \to IR$ be given by $f_n(x) = x^n$. Let f be pointwise limit of $< f_n >$. Is f continuous on [0, 1]. Does $< f_n >$ converge uniformly on [0, 1] ? Justify.
- If a function f is continuous throughout a region R that is closed and (8) Q.2 bounded then show that there exists a non-negative integer M such that $|f(z)| \le M \ \forall \ z \in R$. Also show that if $f'(z_0), g'(z_0)$ exist, $g'(z_0) \neq 0$, $f(z_0) = 0 = g(z_0)$ then $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$
 - Let f(z) = u(x, y) + iv(x, y). If f'(z) exists at a point $z_0 = x_0 + iy_0$ then prove that the first order partial derivatives of u and v exist at (x_0, y_0) and satisfy Cauchy-Riemann equations $u_x = v_y$, $u_y = -v_x$. Show that the converse is not true. Also show that $f'(z) = (u_x)_{z=z_0} +$ $i(v_x)_{z=z_0}$
 - Using the definition, discuss differentiability of the function $f(z) = z^2$ b i at any $z \in \mathbb{C}$
 - f is analytic throughout on a given domain D. If |f(z)| is constant on 11 D, show that f(z) must be constant on D.
 - If a function f(z) = u(x,y) + iv(x,y) is analytic in a domain D then show that its component functions u and v are harmonic in D.
 - Find the image of the given set under the reciprocal map $w = \frac{1}{z}$ in the extended complex plane: $\frac{1}{5} \le |z| \le 2$

(P.T.O)

Q.3 State and prove Cauchy Integral Theorem.

Suppose that a function f is analytic throughout a disk $|z-z_0| \le R_0$ centered at z_0 and with radius R_0 . Then prove that f(z) has the power series representation $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, $|z - z_0| \le R_0$ where $a_n = \frac{f^n(z_0)}{n!}$.

b i If a function f is analytic at a given point then show that its derivatives (12) of all orders are analytic at that point too. Further suppose that a function f is analytic inside and on a positively oriented circle C_{R} centered at z_0 and with radius R and if M_R denotes the maximum value of |f(z)| on C_R then show that $|f^n(z_0)| \le \frac{n!M_R}{R^n}$, n = 1, 2, 3, ...

11 Prove that a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ represents a continuous function S(z) at each point inside its circle of convergence $|z-z_0|=r$.

Show that any singular point of the function $f(z) = \frac{e^z}{z^2 + \pi^2}$ is a pole. iii Further determine the order m of each pole and find the corresponding

iv State Laurent's Theorem. For $f(z) = \frac{-1}{(z-1)(z-2)}$, write Laurent series expansion in the domains |z| < 1, $|z| < \infty$

Q.4 Does the sequence $\langle f_n \rangle$, where $f_n(x) = \frac{nx}{1 + nx^2}$ converges uniformly (15) on [0, ∞)? Justify.

ii For |x| < 1, show that $tan^{-1}x = \sum_{n=1}^{\infty} \frac{(-1)^n}{2.4.6...2n} \frac{x^{2n+1}}{2n+1}$

- Test differentiability of the function f(z) = z Im z at (0,0).
- Construct a linear fractional transformation that maps the points $i, \infty, 3$ to $\frac{1}{2}$ = 1, 3 respectively.
- Evaluate $\int_C \frac{1}{(z-z_0)^{n+1}} dz$ where C is the circle $|z-z_0| = r$, n is a non zero integer using a parameterisation of C.
- Evaluate $\int_C \frac{\sin^6 z}{(z-\pi)^3} dz$ where C: |z| = 2.