Duration $2\frac{1}{2}$ Hrs

REVISED COURSE

Marks: 75

- N.B. : (1) All questions are compulsory
 - (2) Figures to the right indicate marks.
- 1. (a) Attempt any One from the following:

- (8)
- (i) If in a metric space (X, d), for every decreasing sequence $\{F_n\}$ of non-empty closed sets with $d(F_n) \longrightarrow 0$, we have $\cap_{n \in \mathbb{N}} F_n$ is a singleton set then prove that (X, d) is complete.
- (ii) If $x, y \in \mathbb{R}$ are such that x < y then show that there exists a rational number $r \in \mathbb{Q}$ such that x < r < y.
- (b) Attempt any Two from the following:

(12)

- (i) Prove that the set of real numbers \mathbb{R} is complete with respect to the usual distance.
- (ii) Define a complete metric space. If (X, d) is a complete metric space and Y is a closed subspace of X then prove that (Y, d_Y) is complete.
- (iii) Check if Cantor's Theorem is applicable in the following examples. Also, find $\cap_{n\in\mathbb{N}}F_n$ in each case, where (F_n) is a sequence of subsets of \mathbb{R} and the distance in \mathbb{R} is usual.
 - (I) $F_n = [n, \infty)$
 - (II) $F_n = (0, \frac{1}{n})$
- (iv) Show that the function $f: \mathbb{R} \longrightarrow \mathbb{R}$, defined by $f(x) = (x-a)^2(x-b)^2 + x$ takes the value $\frac{a+b}{2}$ for some value of $x \in \mathbb{R}$. (distance in \mathbb{R} being usual.)
- 2. (a) Attempt any One from the following:

(8)

- (i) Let $f:(X,d) \longrightarrow (Y,d')$ be a function. Prove that f is continuous on X if and only if for each open subset G of Y, $f^{-1}(G)$ is an open subset of X.
- (ii) Let (X,d) be a complete metric space. If $T: X \longrightarrow X$ is a contraction, then prove that T has a unique fixed point, that is, \exists a unique point $x \in X$ such that T(x) = x.
- (b) Attempt any Two from the following:

(12)

- (i) (X,d) and (Y,d') be metric spaces. If $f:(X,d) \longrightarrow (Y,d')$ is continuous on X then prove that for every $A \subseteq X, f(\overline{A}) \subseteq \overline{f(A)}$. Also show that the inequality may be strict.
- (ii) Prove that every function $f:(\mathbb{N},d)\longrightarrow (Y,d')$ where d is the usual metric and (Y,d') is any metric space is continuous.
- (iii) Discuss the uniform continuity of $f:[1,\infty)\longrightarrow \mathbb{R}$, defined by $f(x)=\frac{1}{x}$.
- (iv) Let $f: X \to (0, \infty)$ be a continuous function, where (X, d) is a compact metric space. Show that $\exists \epsilon > 0$ such that $f(x) \geq \epsilon$, $\forall x \in X$.

(P.T.O)

(8)

(12)

(15)

- 3. (a) Attempt any One from the following:
 - (i) (X,d) is a metric space and A,B are subsets of X such that A is connected and $A \subseteq B \subseteq \overline{A}$. Prove that B is connected. Give an example to show that if $A \subseteq B \subseteq C \subseteq X$ and A,C are connected then B need not be connected.
 - (ii) Prove that a path connected subset of \mathbb{R}^n (distance being Euclidean) is connected.
 - (b) Attempt any Two from the following:
 - (i) If (X, d) be a connected metric space and $f: X \longrightarrow \mathbb{Z}$ (distance in \mathbb{Z} being usual distance) is a continuous function then prove that f is a constant function.
 - (ii) Show that the set $S = \{(x,y) \in \mathbb{R}^2 : 0 < x < 2, 1 < y < 5\}$ is a convex set in (\mathbb{R}^2, d) where d is the Euclidean distance.
 - (iii) (X, d) is a connected metric space which is not bounded. Prove that for each $x_0 \in X$ and for each r > 0 the set $\{x \in X : d(x, x_0) = r\}$ is nonempty.
 - (iv) Let A be the union of the following subsets S and L of \mathbb{R}^2 . Show that A is connected. (distance in \mathbb{R}^2 being Euclidean).

$$S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

$$L = \{(x, y) \in \mathbb{R}^2 : x \ge 1 \text{ and } y = 0\}$$

- 4. Attempt any Three from the following:
 - (a) $f:[a,b] \longrightarrow \mathbb{R}$ is a continuous such that f takes only rational values then show that f is a constant function.
 - (b) Prove that (0,1) as a subspace of (\mathbb{R},d) (d being usual distance) is not complete but is complete as a subspace of (\mathbb{R},d_1) where d_1 is discrete metric.
 - (c) Let $f:[a,b] \to [a,b]$ is continuous on [a,b] and differentiable on (a,b). If $\exists c \in \mathbb{R}$ with 0 < c < 1 such that $|f'(x)| \le c$, $\forall x \in (a,b)$ then prove that f is a contraction of [a,b].
 - (d) Let (X, d) and (Y, d') be metric spaces. Show that if $f: X \longrightarrow Y$ is uniformly continuous on X and if (x_n) in X is Cauchy then show that the sequence $(f(x_n))$ is Cauchy in Y.
 - (e) Show that $E = \{(x, y) \in \mathbb{R}^2 : x > 0, x^2 y^2 = 1\}$ is path connected.
 - (f) Prove or disprove : If A, B are connected subsets of \mathbb{R} with respect to usual distance and $A \cap B \neq \emptyset$, then $A \cap B$ is also connected.
