Marks: 75

(8)

(12)

(8)

(12)

Duration $2\frac{1}{2}$ Hrs

OLD COURSE

- (2) Figures to the right indicate marks.
- 1. (a) Attempt any One question:

N.B. : (1) All questions are compulsory

- (i) Let f be a continuous real valued periodic function, defined on $[-\pi, \pi]$ and having period 2π . If $f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ is the Fourier series of f on $[-\pi, \pi]$ then prove that : $S_n(x) f(x) = \frac{2}{\pi} \int_0^{\pi} \left[\frac{f(x+t) + f(x-t)}{2} f(x) \right] D_n(t) dt$ where $D_n(x)$ is the Dirichlet's kernel.
- (ii) State and prove Bessels Inequality.
- (b) Attempt any Two questions:

(i) For $f(x) = x \cos x, x \in [-\pi, \pi]$ and $f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$. find Fourier coefficients a_0, a_1, b_1 .

- (ii) Let $f \in C[-\pi, \pi]$ and f has Fourier series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, show that $\sigma_n(t) = \frac{a_0}{2} + \sum_{k=1}^{n-1} \left(1 \frac{k}{n}\right) (a_k \cos kt + b_k \sin kt)$
- (iii) Define Fejer's Kernel $K_n(t)$. Prove that $K_n(t) = \frac{\sin^2(\frac{nt}{2})}{2n\sin^2\frac{t}{2}} \infty < t < \infty$, $t \neq 2k\pi, k \in \mathbb{Z}, t \in \mathbb{R}$
- (iv) Is the series $\sum_{n=1}^{\infty} \left[\frac{\cos nx + \sin nx}{n^{\frac{3}{2}}} \right]$ the Fourier series of a function $f \in C[-\pi, \pi]$? Justify your answer.
- 2. (a) Attempt any One question:
 - (i) $K \subseteq \mathbb{R}^n$ (distance Euclidean), K is closed and bounded. Show that K is sequentially compact.
 - (ii) Let $I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$ (distance Euclidean). Prove that I is compact.
 - (b) Attempt any Two questions:

(i) Let (X, d) and (Y, d') be metric spaces. If (X, d) is compact and $f: X \longrightarrow Y$ is a continuous function, then show that f(X) is a compact subset of Y.

- (ii) Show that $\{0\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ is a compact subset of (\mathbb{R}, d) where d is usual distance in \mathbb{R} using the definition of a compact subset.
- (iii) Let (X,d) be a compact metric space and $f:X\longrightarrow (0,\infty)$ is continuous. Show that there exists $\epsilon>0$ such that $f(x)\geq \epsilon \ \forall x\in X$.

(P.T.O)

Page1 of 2

- (iv) Prove that a subset of a discrete metric space is compact if and only if it is finite.
- 3. (a) Attempt any One question:

(8)

- (i) Show that a subset $E \subseteq \mathbb{R}$ is connected if and only if E is an interval (distance being usual).
- (ii) Show that a metric space (X, d) is connected if and only if every continuous function $f: X \longrightarrow \{1, -1\}$ is constant.
- (b) Attempt any Two questions:

(12)

- (i) Let (X, d) be a metric space and A be a connected subset of X. If $A \subseteq B \subseteq \overline{A}$, then show that B is connected. In particular, prove that \overline{A} is connected.
- (ii) Show that $S = \{(x, y) \in \mathbb{R}^2 : y \neq 0\}$ is not connected. Hence show that S not path connected in a Euclidean metric space \mathbb{R}^2 .
- (iii) If (X, d) is a connected metric space and $f: X \longrightarrow \mathbb{Z}$ a continuous function, prove that f is constant. (distance in Z being usual).
- (iv) Show that a convex set in \mathbb{R}^n is path connected (distance being Euclidean).
- 4. Attempt any Three from the following:

(15)

- (a) If the series $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges uniformly to f on $[-\pi, \pi]$ then prove that Fourier series of f is $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$
- (b) $f(x) = \frac{x^2}{4}$, $-\pi \le x \le \pi$. Find the Fourier series of f. Assuming that the Fourier series of f converges to f(x) at x = 0, find the sum $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.
- (c) Show that a closed subset of a compact set is compact in any metric space.
- (d) Show that $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is a compact subset of \mathbb{R}^2 , distance being Euclidean.
- (e) Let A and B be path connected subsets of a metric space (X, d) such that $A \cap B \neq \emptyset$. Show that $A \cup B$ is path connected.
- (f) Let (X, d) be a connected metric space which is not bounded. Prove that for each $x_0 \in X$ and each r > 0, the set $\{x \in X : d(x, x_0) = r\}$ is non-empty.