(q) Verify that $D(g \circ f)(1,1) = Dg(1,1) \cdot Df(1,1)$

(iv) Let $z = e^{u+v+w}$, where $u = x^2 \sin^2 y$, $v = 2x \sin x \sin y$, $w = y^2$. Use chain rule to find z_x, z_y .

Attempt any ONE of the following (a) State and prove Stoke's Theorem for an oriented smooth simple parametrized surface in 933 bounded by simple , closed, curve traversed counter clockwise assuming general form of Green's Theorem.

State Divergence Theorem for a solid in 3 - space bounded by an (ii) orientable closed surface with positive orientation and prove the Divergence theorem for cubical region.

Q.3

(P.T.O)

(8)

- Attempt any TWO of the following
- Compute the surface area of the part of the paraboloid $z = x^2 + y^2$ that lies under the
- Evaluate the surface integral $\iint_{S} \vec{F} \cdot \hat{n} dS$ if $\vec{F}(x, y, z) = x\hat{i} + y\hat{j} + z\hat{k}$ and S is (ii)

- Use Stokes' Theorem to compute the integral $\iint_S curl \vec{F} \cdot \hat{n} ds$, where $\bar{F}(x,y,z)=yz\hat{\imath}+xz\hat{\jmath}+xy\hat{k}$ and S is the part of the sphere $x^2+y^2+z^2=4$ that lies inside the culture (iii) lies inside the cylinder $x^2+y^2=1$ above the xy-plane.
- Verify Divergence Theorem for vector field $\vec{F}(x,y,z) = 3x\hat{i} + xy\hat{j} + 2xz\hat{k}$ and V is the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1(iv) (15)

Q.4 Attempt any THREE of the following

- If $f(x, y) = \frac{x^2 y^2}{x^2 + y^2}$ for $(x, y) \neq (0, 0)$ and f(0, 0) = 0, then find $\lim_{x\to 0} (\lim_{y\to 0} f(x,y))$ and $\lim_{y\to 0} (\lim_{x\to 0} f(x,y))$. Also find $\lim_{(x,y)\to(0,0)} f(x,y)$ if exists
- Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} x^2 \tan^{-1}\left(\frac{y}{x}\right) - y^2 \tan^{-1}\left(\frac{x}{y}\right), & \text{if } xy \neq 0 \\ 0 & \text{if } xy = 0 \end{cases}$$

Find $D_{12}f(0,0), D_{21}f(0,0)$ and check whether they a

Find $D_{12}f(0,0)$, $D_{21}f(0,0)$ and check whether they are equal.

- (iii) Find all differentiable vector fields $f: \Re^3 \to \Re^3$ for which the Jacobian matrix D f(x,y,z) = diag(p(x),q(y),r(z)) where p, q, $r:\Re \to \Re$ are continuous functions.
- Given u = f(x, y) has continuous partial derivatives with respect to x and (iv) y. If $x = r \cos\theta$, $y = r \sin\theta$, then show that $u_x^2 + u_y^2 = u_r^2 + \frac{1}{2} u_\theta^2$.
- (v) Evaluate the surface integral \(\int xzdS \), where S is the triangle with the vertices (1,0,0), (0,1,0) and (0,0,1).
- Define the Fundamental Vector Product for a surface S whose vector (VI) equation is $\bar{r}(u,v) = X(u,v)\hat{\imath} + Y(u,v)\hat{\jmath} + Z(u,v)\hat{k} \quad \forall (u,v) \in T \text{ in uv-plane.}$ Compute $\left\| \frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v} \right\|$ for $\bar{r}(u, v) = v \sin \alpha \cos u \hat{i} + v \sin \alpha \sin u \hat{j} + v \cos \alpha \hat{k}$