Duration: $2\frac{1}{2}$ Hours **OLD COURSE** Max. Marks: 75 1) All questions are compulsory 2) Figures to the right indicate marks. Q.1 (a) Attempt any ONE of the following (8) (i) If $\lim_{(x,y)\to(a,b)} f(x,y) = L$ and if $\lim_{x\to a} f(x,y)$ and $\lim_{y\to b} f(x,y)$ both exists, then prove that $\lim_{x\to a}(\lim_{y\to b}f(x,y))=\lim_{y\to b}(\lim_{x\to a}f(x,y))=L.$ Give an example to show that the converse is not true. (ii) Let S be an open subset of \mathbb{R}^n and f, g: S $\to \mathbb{R}^m$ and let a \in S, $\lambda \in \mathbb{R}$. If $\lim_{x\to a} f(x) = b$ and $\lim_{x\to a} g(x) = c$ then using $\epsilon - \delta$ definition prove that p) $\lim_{x\to a} (\lambda f(x)) = \lambda b$ q) $\lim_{x\to a} (f(x), g(x)) = b.c$ Attempt any TWO of the following (12)(b) Let f: $\mathbb{R}^2 \to \mathbb{R}^2$ be defined by $f(x, y) = (x^2 - y^2, x^2 + y^2)$. Using (i) $\epsilon - \delta$ definition show that each component of f is continuous at (1, 2). If f: $\mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = |x| + |y| then show that (ii) $f_{\nu}(0,0)$ and $f_{\nu}(0,0)$ do not exist. Check whether f is continuous at (0,0)Find $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{\sqrt{(x^2+y^2)}}$ using polar co-ordinates. (iii) Using $\varepsilon - \delta$ definition, discuss the continuity of $f: \mathbb{R}^2 \to \mathbb{R}^2$ given by (iv) $f(x, y) = (x^2 + 2y, y^2 + 2x)$ at (2, 3) Q.2 (a) Attempt any ONE of the following (8)(i) Let S be an open subset of \mathbb{R}^2 and $f: S \to \mathbb{R}$ be such that $D_1f, D_2f, D_{12}f, D_{21}f$ exists on S. If $(a, b) \in S$ and $D_{12}f, D_{21}f$ are continuous on S, then show that $D_{12}f(a,b) = D_{21}f(a,b)$. (ii) Let S be an open subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ be differentiable at $a \in S$ with total derivative Df(a). Show that f'(a; y) exists for all $y \in \mathbb{R}^n$ and f'(a; y) = Df(a) and $f'(a; y) = \sum_{k=1}^{n} D_k f(a) y_k = \nabla f(a) \cdot y$ for all $y \in \mathbb{R}^n$. (b) Attempt any TWO of the following (12)State and prove the Mean Value Theorem for a scalar field (ii) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function. Let A(1,3), B(3,3), C(1,7), D(6,15). The directional derivative of f at A in the direction of AB is 3 and in the direction of AC is 26. Find the directional derivative of f at A in the direction of AD. (iii) If $f: \Re^2 \to \Re^2, g: \Re^2 \to \Re^3$ $f(x,y) = (xy^2, xy)$, g(u,v) = (u+v, u-v, uv). (p)Compute the Jacobian matrices $Df(x, y), Dg(u, v) \& D(g \circ f)(x, y)$ (q) Verify that $D(g \circ f)(1,1) = Dg(1,1) \cdot Df(1,1)$ (iv) Let $z = e^{u+v+w}$, where $u = x^2 \sin^2 y$, $v = 2x \sin x \sin y$, $w = y^2$. Use chain rule to find z_x, z_y . Q.3 (a) Attempt any ONE of the following (8)State and prove Stoke's Theorem for an oriented smooth simple (i) parametrized surface in \Re^3 bounded by simple ,closed, curve traversed counter clockwise assuming general form of Green's Theorem. (ii) State Divergence Theorem for a solid in 3 – space bounded by an orientable closed surface with positive orientation and prove the Divergence theorem for cubical region.

(P.T.O)

(b) Attempt any TWO of the following

(12)

- (i) Compute the surface area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9
- (ii) Evaluate the surface integral $\iint_{S} \overline{F} \cdot \hat{n} dS$ if $\overline{F}(x, y, z) = x\hat{i} + y\hat{j} + z\hat{k}$ and S is the sphere $x^2 + y^2 + z^2 = 1$.
- (iii) Use Stokes' Theorem to compute the integral $\iint_S curl \, \bar{F} \cdot \hat{n} ds$, where $\bar{F}(x,y,z)=yz\hat{\imath}+xz\hat{\jmath}+xy\hat{k}$ and S is the part of the sphere $x^2+y^2+z^2=4$ that lies inside the cylinder $x^2+y^2=1$ above the xy-plane.
- (iv) Verify Divergence Theorem for vector field $\overline{F}(x,y,z) = 3x\hat{i} + xy\hat{j} + 2xz\hat{k}$ and V is the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1

Q.4 Attempt any THREE of the following

(15)

- (i) If $f(x, y) = \frac{x^2 y^2}{x^2 + y^2}$ for $(x, y) \neq (0, 0)$ and f(0, 0) = 0, then find $\lim_{x \to 0} (\lim_{y \to 0} f(x, y))$ and $\lim_{y \to 0} (\lim_{x \to 0} f(x, y))$. Also find $\lim_{(x,y) \to (0,0)} f(x,y)$ if exists
- (ii) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} x^2 \tan^{-1}\left(\frac{y}{x}\right) - y^2 \tan^{-1}\left(\frac{x}{y}\right) & \text{if } xy \neq 0\\ 0 & \text{if } xy = 0 \end{cases}$$

Find $D_{12}f(0,0)$, $D_{21}f(0,0)$ and check whether they are equal.

- (iii) Find all differentiable vector fields $f: \Re^3 \to \Re^3$ for which the Jacobian matrix D f(x,y,z) = diag(p(x),q(y),r(z)) where p, q, $r: \Re \to \Re$ are continuous functions .
- (iv) Given u=f(x,y) has continuous partial derivatives with respect to x and y. If $x=r\cos\theta$, $y=r\sin\theta$, then show that $u_x^2+u_y^2=u_r^2+\frac{1}{r^2}u_\theta^2$.
- (v) Evaluate the surface integral $\iint_S xzdS$, where S is the triangle with the vertices (1,0,0),(0,1,0) and (0,0,1).
- (vI) Define the Fundamental Vector Product for a surface S whose vector equation is $\bar{r}(u,v) = X(u,v)\hat{i} + Y(u,v)\hat{j} + Z(u,v)\hat{k} \quad \forall (u,v) \in T \text{ in uv-plane.}$ Compute $\left\|\frac{\partial \bar{r}}{\partial u}x\frac{\partial \bar{r}}{\partial v}\right\|$ for $\bar{r}(u,v) = v sin\alpha cosu\hat{i} + v sin\alpha sinu\hat{j} + v cos\alpha \hat{k}$