Duration: $2\frac{1}{2}$ Hrs Marks: 75

- N.B. : (1) All questions are compulsory.
 - (2) Figures to the right indicate marks.
- 1. (a) Attempt any One from the following:

S > T > T

- (i) Show that in a metric space (X, d)
 - (I) an arbitrary union of open sets is an open set.
 - (II) a finite intersection of open sets is an open set.
- (ii) Define an open ball B(x,r) in a metric space (X,d) and show that every open ball is an open set. Also give an example to show that the converse need not be true.
- (b) Attempt any Two from the following:

(12)

- (i) Define a normed linear space (X, || ||). Show that in a normed linear space (X, || ||), $B(x,r) = x + rB(0,1), \forall x \in X, r > 0$.
- (ii) Define distance of a point p from a set A in a metric space (X, d). If $A \subseteq X$ then show that $|d(x, A) d(y, A)| \le d(x, y), \forall x, y \in X$.
- (iii) d_1, d_2 are two metrics on \mathbb{R}^2 defined by

$$d_1(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

where $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$. Show that d_1 and d_2 are equivalent metrics.

- (iv) State and prove the Hausdorff property in a metric space (X, d).
- 2. (a) Attempt any One from the following:

(8)

- (i) Show that for a subset F of a metric space (X, d), F is closed if and only if F contains all its limit points.
- (ii) (X, d) is a metric space and $A, B \subseteq X$. Then prove the following:
 - (I) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$
 - (II) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$ and equality may not hold.
 - (III) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- (b) Attempt any Two from the following:

(12)

- (i) Let (X, d) be a metric space. If sequence (x_n) is a Cauchy sequence in (X, d) and the sequence (x_n) has a convergent subsequence which converges to $p \in X$, then prove that the sequence (x_n) also converges to p.
- (ii) Show that for any subset A of a metric space (X, d), $\delta(A) = \delta(\overline{A})$ where δA indicates the diameter of A.
- (iii) Let d_1 and d_2 be metrics on a non-empty set X such that there exists $k_1, k_2 > 0$ such that $k_1d_1(x,y) \leq d_2(x,y) \leq k_2d_1(x,y) \ \forall x,y \in X$ then show that a sequence (x_n) is bounded in (X,d_1) if and only if (x_n) is bounded in (X,d_2) .
- (iv) Which of the following are dense subsets of \mathbb{R} with the usual distance? Justify your answer.
 - $(I) \mathbb{Q}$
- $(II) \mathbb{Z}$
- $(III) \mathbb{R} \backslash \mathbb{Z}$

1 of 2

3. (a) Attempt any One from the following:

- (8)
- (i) Show that if a subset K of \mathbb{R}^n is sequentially compact then it is closed and bounded. (distance being Euclidean)
- (ii) Show that a subset K of \mathbb{R}^n has the Bolzano-Weierstrass property if and only if K is sequentially compact. (distance being Euclidean)
- (b) Attempt any two from the following:

(12)

- (i) If A, B are compact subsets of \mathbb{R} then show that A + B is also a compact subset of \mathbb{R} . (distance being usual)
- (ii) Prove that a subset of a discrete metric space is compact if and only if it is finite.
- (iii) Show that a closed subset of a compact metric space is compact.
- (iv) Consider the metric space (\mathbb{R}, d) , where d is the usual distance. Show that $\{(\frac{1}{n}, 1) : n \in \mathbb{N}\}$ is an open cover of (0, 1). Is (0, 1) a compact set? Justify your answer.
- 4. Attempt any Three from the following:

(15)

- (a) Prove or disprove: Every open ball in (\mathbb{N}, d_1) is an open ball in (\mathbb{N}, d) where d_1 is the discrete metric on \mathbb{N} and d is the usual metric.
- (b) Show that $U = \{(x,y) \in \mathbb{R}^2 : 2x 3y < 1\}$ is an open subset of \mathbb{R}^2 with the Euclidean metric.
- (c) Consider the sequence (f_n) of functions in C[0,1] defined by

$$f_n(t) = \begin{cases} 0 & \text{if} & 0 \le t \le \frac{1}{2} - \frac{1}{n} \\ nt - \frac{n}{2} + 1 & \text{if} & \frac{1}{2} - \frac{1}{n} < t \le \frac{1}{2} \\ 1 & \text{if} & \frac{1}{2} < t \le 1 \end{cases}$$

Show that $\{f_n\}$ is Cauchy w.r.t. $\| \cdot \|_1$ where $\|f\|_1 = \int_0^1 |f(t)| dt$.

- (d) If (x_n) and (y_n) are sequences in a metric space (X, d) such that $x_n \longrightarrow p$ and $y_n \longrightarrow q$ then show that the sequence of real numbers $d(x_n, y_n) \longrightarrow d(p, q)$ in $(\mathbb{R}, \text{usual})$.
- (e) Prove or disprove:
 - (I) Interior of a compact set is compact.
 - (II) Every compact subset of $(\mathbb{R}, usual)$ has a limit point.
- (f) (X,d) be a compact metric space. If $\{A_n\}$ is a sequence of non-empty closed sets in X such that $A_{n+1} \subseteq A_n$ for each $n \in \mathbb{N}$ then show that $\bigcap A_n \neq \emptyset$.