Paper / Subject Code: 24262 / Mathematics: Graphy Theory

			Duration:	Duration:[3 Hours]			[Total Marks: 100]	
N.B.	1) 2)	All questions are con Figures to the right	- *	ks.				
1. Ch	Choose correct alternative in each of the following:							
i	(a) (b) (c)	Which of the following statement is true? (a) In a simple graph there are at most two vertices of equal degree (b) In a simple graph there at least two vertices of equal degree (c) Degree of vertices are all distinct (d) None of these						
ii		e number of edges of $m+n$	Complete Bipart (b) mn	^ ^: = ~ < :	h $K_{m,n}$ is $m^2 + n^2$		(d) None of these	
iii		Adjacency matrix of a simple graph G is (a) Binary and symmetric (b) Only binary (c) Only Symmetric (d) None of these						
iv	G i (a)	G be a graph on 8 v is $2,2,2,2,1,1,1,1;$ $2,2,1,1,1,1,1,1;$	ertices that has r	(b) 1,	of adjacent edge 1,1,1,1,1,1,1; ch a graph does), _	
V	(a)	G(p, p-1) graph is a G is connected Must be (a) or (b)	tree if		F is acyclic one of the above	ve		
vi		T be a tree with n with T is a path if d (b)		≥ 4 and (c)	97.80 C	tex of m $(d) n$		
vii	(a)	g is a cut vertex of a g G is Hamiltonian and G is not Hamiltonian	d Eulerian.	2 .CY 12.12	G is Hamiltonia None of the abo		ot Eulerian	
viii	(a)	mplete bipartite grap $ V_1 = V_2 $ $ V_1 = V_2 = \text{Even N}$		` '	$ V_1 > V_2 $ None of these			
ix	. If (a)	G is Hamiltonian and $\omega(G-S)= S $ $\omega(G-S)\geq S $	1, 42, 61, 45, 49, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	(b) ω	coper subset of $\nu(G-S) \le S $ None of these	V(G) th	en	
X		mber of edges in cube 24 (e graph Q_4 is b) 16	(c) 18	(c	l) 32	

[TURN OVER

Paper / Subject Code: 24262 / Mathematics: Graphy Theory

2. (a) Attempt any **ONE** question from the following:

- (8)
- i. State and prove Havel Hakimi theorem for degree sequence of a graph G.
- ii. If $(A^n) = (a_{ij}^n)$ is the n^{th} power of adjacency matrix A of a graph G with $V(G) = \{v_1, v_2, \dots v_n\}$, then prove that
 - (a) a_{ij}^2 , $i \neq j$ is the number of $v_i v_j$ path of length 2.
 - (b) $a_{ii}^2 = deg(v_i)$
 - (c) $\frac{1}{6}$ trace of A^3 is the number of triangles in G.
- (b) Attempt any **TWO** questions from the following:

(12)

- i. State and prove Hand-Shaking theorem for Graph. Hence prove that every graph has an even number of odd vertices
- ii. For any graph G with at least 6 vertices, prove that either G or G^c contains a triangle.
- iii. If G is simple graph with p vertices, q edges and k components, then prove that $q \ge p k$.
- iv. If G is graph of order p with $\delta(G) \geq (p-1)/2$, then show that G is connected. Is the bound (p-1)/2 sharp?, that is, in this case, can (p-1)/2 be replaced by (p-2)/2?
- 3. (a) Attempt any **ONE** question from the following:

(8)

- i. Let G be a (p,q) graph. Prove that following statements are equivalent.
 - a) G is tree.
 - b) G is acyclic and q = p 1.
 - c) G is connected and q = p 1.
- ii. State and prove Cayley's formula for spanning trees.
- (b) Attempt any **TWO** questions from the following:

(12)

i. Show that there exist a tree with degree sequence $d_1 \geq d_2 \geq \geq d_n$ if and only if a)

$$d_i \geq 1$$
 , for $1 \leq i \leq n$ and b) $\sum_{i=1}^n d_i = 2n-2$

- ii. Define a cut vertex of a graph G. Show that vertex v is a cut vertex if and only if there exists two vertices x and y such that v is on every x y path in G.
- iii. Explain and write Huffman's algorithm for prefix code.
- iv. Write Breadth First Search and Depth First Search Algorithm for finding a spanning tree.
- 4. (a) Attempt any **ONE** question from the following:

(8)

- i. Show that a nontrivial connected graph G is Eulerian if and only if every vertex of G has even degree.
- ii. If G is graph on p vertices with $p \geq 3$ and $\delta(G) \geq \frac{P}{2}$ where $\delta(G)$ denotes the minimum degree of G then show that G contains a Hamiltonian cycle.

[TURN OVER

55337

- (b) Attempt any **TWO** questions from the following:
 - i. Define a line graph L(G) of a graph G. Show that if the simple graphs G_1 and G_2 are isomorphic, then its line graphs $L(G_1)$ and $L(G_2)$ are isomorphic. Is converse true? Justify.
 - ii. Let G be a simple graph with $p \geq 3$. If closure of G is complete, show that G is Hamiltonian.
 - iii. Prove that the cube graph Q_k is bipartite k-regular graph with 2^k vertices.
 - iv. If G is a (p,q) graph with $p \geq 3$ and $q \geq \frac{1}{2}(p-1)(p-2)+2$, then prove that G is Hamiltonian.
- 5. Attempt any **FOUR** questions from the following:

subset V_1 and the other in the subset V_2 .

- (a) Show that a graph G is disconnected if and only if its vertex set V can be partitioned into two subsets V_1 and V_2 such that there exists no edge in G whose one end vertex is in the
- (b) Show that every u v walk W contains u v path.
- (c) Prove that a connected graph G is a tree if and only if every edge of G is a cut edge.
- (d) Show that every two vertices of a tree are connected by a unique path.
- (e) If G is Hamiltonian graph then for every nonempty proper subset S of V(G), prove that $\omega(G-S) \leq |S|$. Is converse true? Justify.
- (f) Describe Fluery's Algorithm to find a closed Eulerian trail.

55337 3 CF2EE518135A3F04241DECDA833B020B (20)