Q. P. Code: 20499

- **N.B. 1.** All questions are compulsory.
 - 2. From Question 1,2 and 3, Attempt any one from part(a) and any two from part(b).
 - 3. From Question 4, Attempt any THREE
 - **4.** Figures to the right indicate marks for the respective parts.
- Q1 a i Prove that a continuous function is integrable on a rectangular domain.

8

- ii State the Change of variable formula for a triple integral stating the conditions under which it is valid. Explain further, how will you use it to a express triple integral in spherical co-ordinates (ρ , θ , φ).
- b i Use Fubini's Theorem to evaluate $\iint_S f$ where f(x, y) = x + y and S is defined by $S = \{(x, y): |x| \le 1, 0 \le y \le 1 + |x|\}$.
 - ii Use polar co-ordinates to find area of a region S in the first quadrant of circle $x^2 + y^2 8y = 0$ below the line $y = \sqrt{3}x$.
 - Using cylindrical co-ordinates, find the volume of solid S bounded above by the paraboloid $z = 5 x^2 y^2$ and below by the paraboloid $z = 4x^2 + 4y^2$.
 - iv State Leibnitz rule for differentiation under integral sign. Hence find g'(x) for $g(x) = \int_0^1 \log(x^2 + y^2) dy$. Verify your answer by finding g'(x) by direct method.
- Q2 a i Let f be a continuously differentiable scalar field defined on an open set U in \mathbb{R}^n . Suppose P,Q are two points of U that can be connected by piecewise smooth curve C lying in U. Prove that $\int_C \nabla f \cdot dr = f(Q) f(P)$ given that C has parameterization r(t), $t \in [a,b]$ with r(a) = P and r(b) = Q. Further if $F = \nabla f$ where f(x,y) = sin(x-2y), does there exist a smooth, closed path C such that $\int_C F \cdot dr = 1$? If so, find such a path C.
 - ii State and prove Green's Theorem for a rectangle. Evaluate $\oint_c (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$ where C is the circle $x^2 + y^2 = 9$.
 - b i Define the line integral of a vector field F defined on an open set U in \mathbb{R}^n along an oriented curve Γ in U. If Γ and Γ' are two equivalent but orientation reversing curves in U, show that $\int_{\Gamma} F = -\int_{\Gamma} F$.
 - ii Evaluate $\int_C y^2 dx + x dy$ where
 - (1) C is the line segment from (-5, -3) to (0,2)
 - (2) C is the arc of the parabola $x = 4 y^2$ from (-5, -3) to (0,2)
 - (3) Is $F = (y^2, x)$ conservative? Justify your answer.
 - iii Evaluate the line integral $\int_{(0,1)}^{(1,2)} (1-ye^{-x})dx + (e^{-x}) dy$.
 - iv A force field $F(x,y) = cxy i + x^6 y^2 j$, ('c' is a positive constant) acts on a particle which moves it from (0,0) to the line x = 1 along a curve of the form $y = ax^b$ where a > 0, b > 0. Find a value of 'a' (in terms of 'c') if the work done by this force is independent of b.

Q. P. Code: 20499

- Q3 a i State and prove Stokes' theorem for an oriented smooth, simple parameterized 8 surface in \mathbb{R}^3 bounded by a simple, closed curve traversed counter clockwise.
 - ii Let S and V satisfy hypothesis of Divergence Theorem, scalar fields f, g have continuous second order partial derivatives and n is the unit outward normal vector to surface S. For $\bar{r} = x i + y j + z k$ and $r = ||\bar{r}||$. Prove the following.
 - $(1) \int \int_{S} (r^{n} \bar{r}) . dS = (n+3) \int \int \int_{V} r^{n} dV$
 - (2) $|V| = \frac{1}{3} \int \int_{S} \overline{r} \cdot n \, dS$ where |V| is volume of V.
 - (3) $\iint_{S} (f \nabla g) \cdot n \, dS = \iint_{V} (f \nabla^{2} g + \nabla f \cdot \nabla g) \, dV$
 - b i Evaluate $\int \int_S F. \, ndS$ where S is the hemisphere above the XY plane with unit 12 radius and F(x, y, z) = (x, y, 0).
 - Let S = r(T) be a smooth parametric surface described by a differentiable function r defined on a region T. Let f be a scalar field and bounded on S. If R and r are smoothly equivalent parametrizations with R(s,t) = r(G(s,t)) where G(s,t) = u(s,t)i + v(s,t)j is a one to one continuously differentiable map, then show that $\iint_{r(A)} f ds = \iint_{R(B)} f ds$ where G(B) = A.
 - iii Use Gauss Divergence theorem to find $\iint_S F. \, ndS$ where F(x,y,z) = (x+y,y+z,z+x) and S is the region given by $-4+x^2+y^2 \le z \le 4-x^2-y^2$.
 - iv Use Stokes' theorem to evaluate $\int_C x^4 dx xy dy + z^2 dz$ where C is the boundary of the tetrahedron with vertices (2,0,0), (0,2,0) and (0,0,2) lying in the first octant.
- Use spherical co-ordinates to evaluate $\iiint_S z \, dx \, dy \, dz$ where S is the solid enclosed by $x^2 + y^2 + z^2 = 1$, $z \ge 0$.
 - ii Let $D = \{(x,y): a \le x \le b, -\emptyset(x) \le y \le \emptyset(x)\}$ where \emptyset is a non negative continuous function on [a,b]. Let f(x,y) be a function on D such that $f(x,y) = f(x,-y) \ \forall \ (x,y) \in D$. Show that $\iint_D f \, dA = 0$.
 - iii Let U be an open set in \mathbb{R}^n and $\alpha: [a,b] \to U$ be a parameterization of curve Γ . If $f: U \to \mathbb{R}$ is a continuous function, then show that $\int_{\Gamma} f = \int_{\Gamma_1} f + \int_{\Gamma_2} f$, where Γ_1 and Γ_2 are restrictions of α to [a,c] and [c,d] where a < c < b.
 - iv Evaluate the line integral of f(x, y, z) = x + y + z, along the path $\gamma(t) = (\sin t, \cos t, t), \ 0 \le t \le 2\pi$.
 - Find surface area of S, where S is the part of the paraboloid $z = x^2 + y^2$ that lies below the plane z = 9.
 - vi If S and C satisfy hypothesis of Stokes' Theorem and f, g have continuous second order partial derivatives. Then prove that $\int_C (f \nabla g) \, dr = \int_S (\nabla f \times \nabla g) \, n \, dS$

Page 2 of 2