Paper / Subject Code: 24246 / Mathematics: Topology of Metric Spaces

Duration: 3 Hrs				Marks: 100	
N.B	(/ 1	ns are compulsory. the right indicate ma	arks.		
1. Choose correct alternative in each of the following:					(20)
(i)	 (i) Let A = {x ∈ ℝ : sin x ≤ 1/2}, with usual metric on ℝ, which of the following statements is true? (a) A is an open subset of ℝ. (b) A is a closed subset of ℝ. (c) A is an open as well as closed subset of ℝ. (d) None of these 				
(ii)	(ii) Which of the following subset of usual metric space \mathbb{R} is not dense?				
	(a) \mathbb{Q}	(b) $\mathbb{R} \setminus \mathbb{Q}$	(c) N	$\mathrm{(d)} \ \mathbb{R}$	
(iii)	i) Let (\mathbb{R}, d) be a metric space where d is a discrete metric. Then, which of the following subset of (\mathbb{R}, d) is infinite?				
	(a) $B(0, 0.5)$	(b) $B(0,1)$	(c) $B(0,2)$	(d) None of these.	
(iv)	(iv) Which of the following sequences in (\mathbb{Q}, d) , d is a usual metric from \mathbb{R} , is convergent in \mathbb{Q} ?				
	(a) $x_n = \left(1 + \frac{1}{n}\right)^n$ (b) $x_n = \frac{2n+1}{3n+2}$, n		(c) $x_n = \frac{\lfloor \sqrt{2}n \rfloor}{n}, n \in \mathbb{N}.$ (d) $x_n = \frac{n^2 + 1}{n + 3}, n \in \mathbb{N}.$		
(V)	(v) Every Cauchy sequence is eventually constant in				
	(a) (\mathbb{N}, d) where d is usual. (b) (\mathbb{Q}, d) where d is usual.		(c) $(\mathbb{R} \setminus \mathbb{Q}, d)$ where d is usual. (d) None of the above.		
(vi)	Let d_1 and d_2 be metrics on X such that $k_1d_2(x,y) \leq d_1(x,y) \leq k_2d_2(x,y)$ for all $x,y \in X$ where $k_1, k_2 > 0$ are constants. Then the statement which is not true is (a) (x_n) is Cauchy in (X, d_1) if and only if (x_n) is Cauchy in (X, d_2) . (b) $x_n \longrightarrow p$ in (X, d_1) if and only if $x_n \longrightarrow p$ in (X, d_2) . (c) (x_n) is bounded in (X, d_1) if and only if (x_n) is bounded in (X, d_2) . (d) None of the above.				
(vii)	In \mathbb{R} with respect to usual distance $\bigcap_{n\in\mathbb{N}}F_n$ is a singleton set when (a) $F_n=[-n,n]$ (b) $F_n=[n,n+1]$ (c) $F_n=[1-\frac{1}{n},1]$ (d) $F_n=[0,n]$				
(viii)	iii) Which of the following subset of \mathbb{R} or \mathbb{R}^2 is compact with respect to the Euclidean metric				

74690 1 of 3

Paper / Subject Code: 24246 / Mathematics: Topology of Metric Spaces

- (a) $\{(x,y) \in \mathbb{R}^2 : x^2 y^2 = 1\}$ (b) $\{x \in \mathbb{R} : x^2 < 2\}$ (c) $\{x \in \mathbb{Z} : x^2 < 2\}$ (d) $\{(x, y) \in \mathbb{R}^2 : y^2 = x\}$
- (ix) Let A be a compact subset of \mathbb{R} . Then
 - (a) A may not be compact. (b) A° may not be compact.
 - (d) None of the above. (c) ∂A may not be compact.
- (x) Let (X,d) be a metric space and (x_n) be a sequence in X such that $x_n \to x_0$ as $n \to \infty$. Then
 - (a) $\{x_n : n \in \mathbb{N}\}$ is a compact subset of X
 - (b) $\{x_n : n \in \mathbb{N}\} \cup \{x_0\}$ is a compact subset of X
 - (c) $\{x_n : n \in \mathbb{N}\} \cup \{x_0\}$ is compact only if (x_n) is a sequence of distinct points.
 - (d) None of the above.
- 2. (a) Attempt any One of the following:

(8)

- (i) Every infinite bounded subset of \mathbb{R} has a limit point. (distance being usual)
- (ii) Let (X, d) be a metric space. Prove the following:
 - (I) Arbitrary union of open sets is open.
 - (II) A subset G of X is open if and only if it is an union of open balls.
- (b) Attempt any Two of the following:

(12)

- (i) Let A be a subset of a metric space (X, d). Prove that
 - (I) $(X \setminus A) = X \setminus A^{\circ}$
 - (II) $(X \setminus A)^{\circ} = X \setminus (\overline{A})$
- (ii) Let (X,d) be a metric space. $d_1: X \times X \to \mathbb{R}$ is a metric defined as $d_1(x,y) =$ $\frac{d(x,y)}{1+d(x,y)}$, $\forall x,y \in X$. Show that d and d_1 are equivalent metrics on X
- (iii) Let $(X, \| \|)$ be a normed linear space and $A \neq \emptyset, A \subseteq X$. Show that if $U \neq \emptyset, U \subseteq X$ is an open set then U + A is open.
- (iv) Show that $B_1(0,1)$ in $(C[0,1], || ||_1)$ is open in $(C[0,1], || ||_{\infty})$ where $||f||_1 = \int_0^1 |f(t)| dt$, $||f||_{\infty} = \int_0^1 |f(t)| dt$ $\sup\{|f(t)|: t \in [0,1]\} \text{ and } B_1(0,1) = \{f \in C[0,1]: ||f||_1 < 1\}.$
- (a) Attempt any One of the following:

(i) Let (X,d) be a metric space and A be a subset of X. Show that $p \in X$ is a limit point of A if and only if there is a sequence of distinct points in A converging to p.

- (ii) State and prove the Nested interval theorem in \mathbb{R} .
- (b) Attempt any Two of the following:

(12)

(8)

- (i) If (x_n) and (y_n) are sequences in a metric space (X,d) such that $x_n \longrightarrow p$ and $y_n \longrightarrow q$ then show that the sequence of real numbers $d(x_n, y_n) \longrightarrow d(p, q)$ in $(\mathbb{R}, usual)$.
- (ii) Let (X, d) be a metric space and Y be a non-empty subset of X. Prove that a subset G of Y is open in the subspace (Y, d) if and only if $G = V \cap Y$ where V is an open set in (X,d).

74690 2 of 3

Paper / Subject Code: 24246 / Mathematics: Topology of Metric Spaces

- (iii) Check if Cantor's Theorem is applicable in the following examples. Also, find $\cap_{n\in\mathbb{N}}F_n$ in each case, where (F_n) is a sequence of subsets of $X \subseteq \mathbb{R}$
 - (i) X = [-1, 1] and distance d is the usual distance, $F_n = [-\frac{1}{n}, \frac{1}{n}]$
 - (ii) $X = \mathbb{R}, d$ discrete metric, $F_n = (0, \frac{1}{n})$
- (iv) Show that (\mathbb{N}, d) is a complete metric space where for $m, n \in \mathbb{N}$,

$$d(m,n) = \begin{cases} 0 & \text{if } m = n \\ 1 + \frac{1}{m+n} & \text{if } m \neq n \end{cases}$$

(8)

(12)

(20)

- (a) Attempt any One of the following:
 - (i) Let A be a non-empty subset of the metric space (\mathbb{R},d) where d is the usual metric. Prove that A is sequentially compact if and only if A satisfies the Bolzano-Weierstrass property.
 - (ii) Show that a compact subset of a metric space is closed and bounded. Give an example to show that a closed and bounded subset need not be compact.
 - (b) Attempt any Two of the following:
 - (i) Suppose (X, d) is a metric space and \mathcal{C} is a non-empty collection of compact subsets of X then show that if \mathcal{C} is finite then $\bigcup_{K \in \mathcal{C}} K$ is a compact subset of X. (ii) Show that $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is a compact subset of \mathbb{R}^2 , distance being
 - Euclidean.
 - (iii) If $X = [0,1] \subset (\mathbb{R},d)$, where d is the discrete metric, show that the open cover $\left\{B(x,\frac{1}{2}): x \in [0,1]\right\}$ of X has no finite subcover.
 - (iv) Show that $\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1^2 + 2x_2^2 + \dots + nx_n^2 \le (n+1)^2\}$ is a compact subset of $(\mathbb{R}^n, d), d$ being Euclidean.
- 5. Attempt any Four of the following:
 - (a) State and prove Hausdorff property in a metric space (X, d).
 - (b) Show that $S = \{x \in \mathbb{Q} : 3 < x^2 < 5\}$ is both open and closed in the subspace \mathbb{Q} of \mathbb{R} with
 - (c) $f:[a,b] \to \mathbb{R}$ is a continuous such that f takes only rational values then show that f is a constant function.
 - (d) Prove or disprove: If d_1 and d_2 are equivalent metrics on X and (X, d_1) is a complete metric space then (X, d_2) is also a complete metric space.
 - (e) If A, B are compact subsets of \mathbb{R} with respect to usual distance, show that $A \times B$ is a compact subset of \mathbb{R}^2 with Euclidean metric.
 - (f) Consider the set A = [0,1] in the metric space $(\mathbb{R},d),d$ being the discrete metric. Show that the open cover $\{B(x,\frac{1}{2})\}_{x\in[0,1]}$ of A has no finite subcover.

74690 3 of 3