Duration 2 $\frac{1}{2}$ Hrs Marks: 75

- N.B. : (1) All questions are compulsory
 - (2) Figures to the right indicate marks.
- 1. (a) Attempt any One from the following:

(8)

- (i) Let (X, d) be a metric space and $A \subseteq X$. Show that
 - (I) A° is an open set and is the largest open set contained in A.
 - (II) A is open if and only if $A = A^{\circ}$.
- (ii) Define an open ball B(x,r) in a metric space (X,d) and show that every open ball is an open set. Also give an example to show that converse need not be true.
- (b) Attempt any Two of the following:

- (12)
- (i) Let (X, || ||) be a normed linear space and $A \neq \emptyset, A \subseteq X$. Show that if $U \neq \emptyset, U \subseteq X$ is an open set then U + A is open.
- (ii) Define distance of a point p from set A in a metric space (X, d). If $A \subseteq X$ then show that $|d(x, A) d(y, A)| \le d(x, y), \forall x, y \in X$.
- (iii) Prove or disprove: Every open ball in (\mathbb{N}, d_1) is an open ball in (\mathbb{N}, d) where d_1 is the discrete metric on \mathbb{N} and d is the usual metric.
- (iv) Let d_1, d_2 be metrics on X. Define $d: X \times X \longrightarrow \mathbb{R}$ as $d(x, y) = \max \{d_1(x, y), d_2(x, y)\}$. Show that d is a metric on X.
- 2. (a) Attempt any One of the following:

(8)

- (i) Show that for a subset F of a metric space (X, d), the following statements are equivalent:
 - (I) F is closed
 - (II) F contains all its limit points.
- (ii) Let (X, d) be a metric space and Y be a non-empty subset of X. Prove that a subset G of Y is open in the subspace (Y, d) if and only if $G = V \cap Y$ where V is an open set in (X, d).
- (b) Attempt any Two of the following:

(12)

- (i) Let (X, d) be a metric space and $A \subseteq X$. If $G \subseteq X$ is an open set such that $G \cap A = \emptyset$ then show that $G \cap \overline{A} = \emptyset$.
- (ii) Let d_1 and d_2 be metrics on a non-empty set X such that there exists $k_1, k_2 > 0$ such that $k_1d_1(x,y) \le d_2(x,y) \le k_2d_1(x,y) \quad \forall x,y \in X$ then show that (x_n) is bounded in (X,d_1) if and only if (x_n) is bounded in (X,d_2)
- (iii) Let A be a subset of a metric space (X, d). Prove that
 - (I) $(X \setminus A) = X \setminus A^{\circ}$
 - (II) $(X \setminus A)^{\circ} = X \setminus (\overline{A})$

s Ž

- (iv) Let d and d_1 be equivalent metrics on X. If $(x_n) \longrightarrow p$ in (X, d) then prove that $(x_n) \longrightarrow p$ in (X, d_1) .
- 3. (a) Attempt any One of the following:

(8)

- (i) Show that if a subset K of \mathbb{R}^n is sequentially compact then it is closed and bounded. (distance being Euclidean)
- (ii) If $I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$ then prove that I is compact (distance in \mathbb{R}^n being Euclidean).
- (b) Attempt any Two of the following:

(12)

- (i) If A, B are compact subsets of \mathbb{R}^2 then show that A + B is also a compact subset of \mathbb{R}^2 .(distance being Euclidean)
- (ii) Show that closed subset of compact metric space is compact.
- (iii) Show that $(C[0,1], \| \|_{\infty})$ where $\|f\|_{\infty} = \sup\{|f(t)| : t \in [0,1] \text{ is not compact by considering the open cover } \{B(0,n) : n \in \mathbb{N}\} \text{ of } C[0,1].$
- (iv) Prove or disprove:
 - (I) Interior of a compact set is compact.
 - (II) Closure of a compact set is compact.
- 4. Attempt any Three of the following:

(15)

- (a) State and prove Hausdorff property in a metric space (X, d).
- (b) Show that d is a metric on \mathbb{N} , for $m, n \in \mathbb{N}$,

$$d(m,n) = \begin{cases} 0 & \text{if } m = n \\ 1 + \frac{1}{m+n} & \text{if } m \neq n \end{cases}$$

- (c) Which of the following are dense subsets of \mathbb{R} with usual distance? Justify your answer.
 - $(I) \mathbb{Z}$
- $(II) \mathbb{R} \setminus \mathbb{Q}$
- (III) $\mathbb{R}\setminus\mathbb{Z}$
- (d) Let (X, d) be a metric sapce (X, d). Show that every Convergent sequence X is Cauchy.
- (e) Give an example of two metrics d_1 and d_2 on X such that (X, d_1) is compact but (X, d_2) is not compact.
- (f) Which of the following subsets of (\mathbb{R}^2, d) , (d being Euclidean distance) are compact? Justify your answer.
 - (i) $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$
 - (ii) $B = \{(x, y) \in \mathbb{R}^2 : y^2 = x\}$

2 of 2