## Paper / Subject Code: 24215 / Mathematics: Multivariable Calculus II



## Paper / Subject Code: 24215 / Mathematics: Multivariable Calculus II

viii. The fundamental vector product for the cone

$$x = r \cos \theta$$
,  $y = r \sin \theta$ ,  $z = r$ ,  $0 \le \theta \le 2\pi$ ,  $0 \le r \le 1$  is

- (a)  $(-r\cos\theta, -r\sin\theta, r)$
- (b)  $(r\cos\theta, r\sin\theta, r)$
- (c)  $(-r\cos\theta, r\sin\theta, r)$
- (d) None of these
- ix.  $F(x, y, z) = (3xz, -5yz, z^2)$  and curl  $(pyz^2, 0, qxyz) = F$ . Then value of p and q are
  - (a) -1 & 3

(b) 1 & -3

(c) 1 & 3

- (d) None of these
- The surface integral  $\iint_S ax\hat{\imath} + by\hat{\jmath} + cz\hat{k} \cdot dS$  over the surface of a unit sphere enclosing a volume V is
  - (a)  $(a + b + c) 4\pi$

(b) (a + b + c)V

(c)  $(a+b+c)4\pi^2$ 

(d) None of these

Q.2 a) Attempt any ONE.

(08)

- i. State and prove Fubini's Theorem for a rectangular domain in  $\mathbb{R}^2$ .
- ii. If *U* is an open set in  $\mathbb{R}^2$  containing the rectangle  $[a, b] \times [c, d]$  and  $f: U \to \mathbb{R}$  is continuously differentiable function then show that  $g'(x) = \int_c^d \frac{\partial f}{\partial x}(x, y) dy$  where  $g(x) = \int_c^d f(x, y) dy$ ,  $\forall x \in [a, b]$ .
- b) Attempt any TWO.

(12)

- i. If  $S = \{(x,y) : a \le x \le b, \phi_1(x) \le y \le \phi_2(x)\}$  is a region in  $\mathbb{R}^2$  where  $\phi_1, \phi_2 : [a,b] \to \mathbb{R}$  are continuous and a function  $f : S \to \mathbb{R}$  is continuous in the interior of S with  $f(x,y) \ge 0 \ \forall (x,y) \in S$  then prove that  $\iint_S f \ge 0$ .
- ii. Evaluate the integral  $\int_0^3 \int_0^{\sqrt{9-x^2}} (9-y^2)^{3/2} dy dx$  by reversing the order of integration.
- Evaluate the integral  $\iiint_S z \, dx dy dz$  where S is the solid in the first octant bounded by the sphere  $x^2 + y^2 + z^2 = 9$ .
- iv. Using cylindrical co-ordinates find the volume of the solid region S in  $\mathbb{R}^3$  bounded by the cone  $z = \sqrt{x^2 + y^2}$  and the paraboloid  $z = x^2 + y^2$ .
- Q.3 a) Attempt any ONE.

(08)

- i. Suppose F is a continuous vector field defined on an open connected set U in  $\mathbb{R}^n$ . Define a function  $\phi: U \to \mathbb{R}$  by  $\phi(v) = \int_{v_0}^v F$  where  $v_0$  is a fixed point in U and F is conservative. Show that  $\nabla \phi(v) = F(v) \ \forall v \in U$ .
- ii. State and prove Green's Theorem for a rectangle. Further state Green's theorem for a closed region D in  $\mathbb{R}^2$  whose boundary is a simple closed curve C. Show that area of region D =  $\oint_C xdy$ .

- b) Attempt any TWO.
  - i. Evaluate the line integral  $\int_{(-1,2)}^{(3,1)} (y^2 + 2xy) dx + (x^2 + 2xy) dy$ .
  - ii. Using Green's theorem evaluate the line integral  $\oint_C 2x \cos y \, dx + x^2 \sin y \, dy$ , where C is the positively oriented boundary of the region R enclosed between  $y = x^2$  and y = x.
  - iii. Define the line integral of a vector field F defined on an open set U in  $\mathbb{R}^n$  along an oriented curve  $\Gamma$  in U. If  $\Gamma$  and  $\Gamma'$  are two equivalent but orientation reversing curves in U, show that  $\int_{\Gamma} F = -\int_{\Gamma'} F$ .
  - iv. Find the work done by the force F = (-4xy, 8y, z) as the point of application moves along the curve of intersection of the parabolic cylinder  $y = x^2$  and the plane z = 1 from (0,0,1) to (2,4,1).
- Q.4 a) Attempt any ONE.
  - i. Let  $S = \bar{r}(T)$  be a smooth parametric surface described by a differentiable function  $\bar{r}$  defined on region T. Let f be defined and bounded on S. Define surface integral of f over S. If R and r are smoothly equivalent functions,  $R(s,t) = \bar{r}(G(s,t))$  where  $G(s,t) = u(s,t)\hat{\imath} + v(s,t)\hat{\jmath}$  being continuously differentiable. Then show that  $\iint_{r(A)} f dS = \iint_{R(B)} f dS$  where G(B) = A.
  - ii. State and prove Stokes' Theorem for an oriented smooth, simple parameterized surface in  $\mathbb{R}^3$  bounded by a simple, closed curve traversed counter clockwise assuming general form of Green's Theorem.
  - b) Attempt any TWO.

(12)

(12)

(08)

- i. If S and C satisfy hypothesis of Stokes' Theorem and f, g have continuous second order partial derivative, prove with usual notations
  - (a)  $\int_{\mathcal{C}} (f \nabla g) . dr = \iint_{\mathcal{S}} (\nabla f X \nabla g) \hat{n} ds$
  - (b)  $\int_C (f \nabla f) . dr = 0$
  - (c)  $\int_C (f \nabla g + g \nabla f) dr = 0$
- ii. Evaluate surface integral of  $f(x, y, z) = x^2 + y^2$  where S is the surface of the paraboloid  $x^2 + y^2 = 4 z$  above the XY-plane.
- iii. Use Stokes' theorem to find  $\iint_S$  (curl F)  $\cdot$  n dS where F(x, y, z) = (y, z, x) and S is the surface of the paraboloid  $z = 1 x^2 y^2$ ;  $z \ge 0$ .
- iv. Evaluate  $\iint_S f(x, y, z) \cdot \hat{n} ds$  where f(x, y, z) = (x, y, z) and S is the surface of the cylinder  $x^2 + y^2 = 4$  between  $0 \le z \le 4$ .
- Q.5 Attempt any FOUR.

(20)

- Evaluate  $\iiint_S dV$  where region S is bounded by the three co-ordinate planes and the plane x + y + z = 1.
- b) Evaluate  $\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{dxdy}{1+x^2+y^2}$  by converting into polar coordinates.

## Paper / Subject Code: 24215 / Mathematics: Multivariable Calculus II

- c) Evaluate the line integral of f(x, y, z) = x + y + z, along the path  $\gamma(t) = (\sin t, \cos t, t), \ 0 \le t \le 2\pi$ .
- d) Find a potential function of F where  $F(x, y, z) = (e^x \sin z + 2yz, 2xz + 2y, e^x \cos z + 2xy + 3z^2).$
- e) Find surface area of S where S is the surface of the sphere  $x^2 + y^2 + z^2 = 16$  in first octant.
- f) Use Gauss Divergence theorem to find  $\iint_S F \cdot \bar{n}dS$ : where F(x, y, z) = (y x, z y, y x) and S is the cube bounded by the planes  $x = \pm 1, y = \pm 1, z = \pm 1$ .

------