$2\frac{1}{2}$ Hours] [Total Marks: 75

N.B.: (1) All questions are compulsory.

(2) Figures to the right indicate marks for respective subquestions.

1. (a) Answer any **ONE**

- i. If $T: \mathbb{R}^n \to \mathbb{R}^n$ is an isometry such that T(0) = 0 then, show that T is an orthogonal linear transformation.
- ii. state and prove the Cayley Hamilton theorem.

(b) Answer any **TWO**

- i. Let V be a finite dimensional real vector space and W be a subspace of V. Show that $\dim V/W = \dim V \dim W$.
- ii. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \end{pmatrix}$. A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ is defined by T(x) = AX(X) being a column vector in \mathbb{R}^3). Find kerT, a basis of kerT and $\mathbb{R}^3/kerT$. Also find ImT.
- iii. Show that similar matrices have same characteristic polynomial. Is the converse true? Justify.
- iv. If $A_{2\times 2}$ is a nilpotent real matrix then prove that $A^m=0$ for all positive integers m>1.

2. (a) Answer any **ONE**

- i. Show that a real matrix with n eigen values is similar to an upper triangular matrix of order n with the eigen values on diagonal.
- ii. Show that minimal polynomial of a real matrix $A_{n\times n}$ divides every polynomial which annihilates A. Further prove that α is a root of the minimal polynomial of matrix A if and only if α is a characteristic root of A.

(b) Answer any **TWO**

- i. Show that eigen vectors v_1, v_2, \dots, v_k corresponding to distinct eigen values $\lambda_1, \lambda_2, \dots, \lambda_k$ respectively of a square matrix A are linearly independent.
- ii. If A, B are $n \times n$ real matrices and A is non-singular then show that AB and BA have same eigen values.
- iii. Let $A_{3\times3}$ be a real matrix and 1, -1, 3 be its eigen values. Which of A, A^2-A , A^2-I , A^2-2A , A^2+3A , A^2-3A matrices are nonsingular? Justify your answer.

[P.T.O.]

(8)

(6)

(6)

(6)

(8)

(8)

(6)

(6)

(6)

iv. Let $A_{n\times n}$ be a real matrix. if A has n distinct characteristic roots, then prove that the characteristic polynomial of A = the minimal polynomial of A.

3. (a) Answer any **ONE**

- i. Show that an $n \times n$ matrix A is diagonalizable if and only if A has n (8) eigen values where algebraic multiplicity of each eigen value coincides with its geometric multiplicity.
- ii. Show that a quadratic form Q is positive definite if and only if all eigen values of associated symmetric matrix are positive. (8)

(b) Answer any **TWO**

i. Show that a real matrix $A_{n \times n}$ with distinct eigen values is diagonalizable. (6)

(6)

- ii. Let A be a real symmetric matrix. Show that $\langle AX, Y \rangle = \langle X, AY \rangle$ for all $X, Y \in \mathbb{R}^n$. Hence or otherwise, prove that eigen vectors corresponding to distinct eigen values of a real symmetric matrix are mutually orthogonal.
- iii. If A is a $n \times n$ diagonalizable matrix with eigen values 1 and -1, show that $A = A^{-1}$.
- iv. Show that a non-zero $n \times n$ matrix of rank 1 is diagonalisable with eigen values 0, tr A.

4. Answer any **THREE**

- (a) Find the orthogonal transformations in \mathbb{R}^3 which represent reflection with respect to x + y z = 0.
- (b) Show that $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\alpha(x,y,z) = (\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y 2, \frac{1}{\sqrt{2}}x \frac{1}{\sqrt{2}}y + 3, z + 2)$ is an isometries. Express it as a composite of an orthogonal transformation and a translation. (5)
- (c) Let V be a vector space of finite dimension and $T:V\to V$ be a linear transformation. Show that eigen space corresponding to any eigen value of T is invariant under T.
- (d) Let $A_{n\times n}$ be a matrix with all the entries as 1. Find eigen values and the corresponding eigen spaces of A.
- (e) Prove that if every non-zero vector of \mathbb{R}^n is an eigen vector of $A_{n\times n}$ then A (5) is a $n\times n$ scalar matrix.
- (f) By applying rotation of coordinate axes reduce the conic $2x^2-4xy-y^2+8=$ (5) 0 into standard form. Hence identify it.
