3 Hours] [Total Marks: 100

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate marks for respective subquestions.
- 1. Fill in the blank by choosing the correct option.

i. Let
$$V = \mathbb{R}^3$$
, $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$, then dim $V/W = ----$.

(a) 2 (b) 3 (c) 1 (d) None of these.

ii.
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 is — (2)

- (a) an orthogonal matrix of reflection
- (b) an orthogonal matrix of rotation
- (c) not an orthogonal matrix
- (d) None of these.

iii. Let
$$A = \begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix}$$
, then $A^{-1} =$ (2)

- (a) A 6I (b) A + 6I (c) A I (d) None of these.
- iv. If characteristic polynomial of A is $t^2 + a_1t + a_0$ and characteristic polynomial of A^{-1} is $t^2 + b_1t + b_0$. Then $a_0b_0 =$ (2)
 - (a) 0 (b) 1 (c) -1 (d) None of these.
- - (a) 1 (b) 2 (c) -2 (d) None of these.
- vi. Let $A_{3\times 3}$ be a real matrix of rank 1, then the eigen values of A are (2)
 - (a) 0 and 1 (b) 0 and tr A
 - (c) 0 and $\det A$ (d) None of these.
- vii. The minimal polynomial of the diagonal matrix (2)

 $A = \text{diag } \{1, -1, 1, -1\} \text{ is}$

- (a) $x^2 + 1$ (b) $x^2 1$ (c) $(x^2 1)^2$ (d) None of these.
- - (a) only A is diagonalisable. (b) only B is diagonalisable.
 - (c) both A and B are diagonalisable. (d) None of these.

[Turn over]

ix.
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 is — (2)

- (a) diagonalisable but not orthogonally diagonalisable.
- (b) orthogonally diagonalisable
- (c) not diagonalisable
- (d) None of these.
- x. Rank and signature of the quadratic from $Q(x) = 2x_1^2 + 2x_2^2 2x_1x_2$ (2) are ——-
 - (a) 2 and 2 (b) 2 and 0
 - (c) 2 and -2 (d) None of these.

2. (a) Attempt any **ONE**

- i. Let V be a finite dimensional inner product vector space and $T: V \to V$ be a linear transformation. Prove that the following statements are equivalent.
 - (p) T is orthogonal.
 - (q) ||T(X)|| = ||X|| for all $X \in V$.
 - (r) If $\{e_i\}_{i=1}^n$ is an orthonormal basis of V, then $\{T(e_i)\}_{i=1}^n$ is also an orthonormal basis of V.
- ii. State and prove the 'First Isomorphism Theorem of vector space' (Fundamental theorem of vector space homomorphism). (8)

(b) Attempt any **TWO**

- i. Show that any orthogonal linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ (6) is either a rotation about origin or a reflection about a line passing through origin.
- ii. Let $A_{n \times n}$ be a real matrix. If a_0 is the constant term of the polynomial det $(xI_n A)$ then show that $a_0 = (-1)^n \det A$.
- iii. Let $A_{7\times7}$ be a diagonal matrix over \mathbb{R} with characteristic polynomial $(t+4)^3(t-3)^4$. Let $W = \{B \in M_7(\mathbb{R}) : AB = BA\}$. Find dim $M_7(\mathbb{R})/W$.
- iv. Let A be $n \times n$ real matrix. Express the characteristic polynomial of aI + A in terms of the characteristic polynomial of A where $a \in \mathbb{R}$. Hence or otherwise show that, if $A_{n \times n}$ is nilpotent then the characteristic polynomial of $A I_n$ is $(x-1)^n$.

3. (a) Attempt any **ONE**

- i. Let $A_{n\times n}$ be a real matrix and $\lambda_1, \lambda_2, \dots, \lambda_k$ be the distinct eigenvalues of A with X_1, X_2, \dots, X_k as corresponding eigen vectors, then show that X_1, X_2, \dots, X_k are linearly independent.
- ii. Define minimal polynomial of a suare matrix. Show that α is a root of the minimal polynomial of matrix A if and only if α is a characteristic root of A.

(b) Attempt any **TWO**

- i. Define invariant subspace. Let V be a finite dimension vector space and $T: V \to V$ be a linear transformation. Show that $\ker T, \operatorname{Im} T$ are invariant under T.
- ii. Let A and B be $n \times n$ real matrices. Prove that if A and B are similar then characteristic polynomial of A = characteristic polynomial of B. Is the converse true? Justify.
- iii. Let λ_0 be an eigen value of $n \times n$ matrix A. Show that any non-zero column of adj $(A \lambda_0 I)$ is an eigen vector of A corresponding to λ_0 .
- iv. Find the characteristic polynomial and the minimal polynomial of $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$.

4. (a) Attempt any **ONE**

- i. Show that an $n \times n$ matrix A is diagonalizable if and only if \mathbb{R}^n has a basis consisting of eigen vectors of A.
- ii. Show that any real symmetric matrix is orthogonally diagonalizable. (8)

(b) Attempt any TWO

- i. Show that every quadratic form $Q(x_1, x_2, \dots, x_n)$ over \mathbb{R} can (6) be reduced to standard form $\sum_{i=1}^{n} \lambda_i y_i^2$ by an orthogonal change of the variables $X = PY, X = (x_1, x_2, \dots, x_n)^t, y = (y_1, y_2, \dots, y_n)^t$ and P is an $n \times n$ orthogonal matrix.
- ii. Show that eigen vectors associated to distinct eigen values of a real symmetric matrix are orthogonal.
- iii. Show that $A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ is diagonalizable if and only if b = 0 (6) or $a \neq d$.

Paper / Subject Code: 24231 / Mathematics: Linear Algebra

- iv. Let A be a square matrix of order n such that $A^2 = A$. Show that A is diagonalizable.
- 5. Attempt any **THREE**
 - (a) If $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$. Find $A^4 4A^3 A^2 4A 20I$ using the Cayley (5) Hamilton theorem.
 - (b) Let A and B be $n \times n$ real matrices. If A and AB are orthogonal matrices then prove that B and BA are both orthogonal matrices.
 - (c) Find the eigenvalues and the bases of the corresponding eigen (5) spaces for $\begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.
 - (d) If $(x-1)(x+2)^2$ is the characteristic polynomial of a matrix $A_{3\times 3}$ (5) then find the characteristic polynomial of (i) A^{-1} (ii) A^t (iii) A^2 .
 - (e) Show that $A = \begin{bmatrix} a & b & c & d \\ a & b & c & d \\ a & b & c & d \\ a & b & c & d \end{bmatrix}$ is diagonalisable. (5)
 - (f) Identify the conic $2x^2 4xy y^2 + 8$. (5)
