$2\frac{1}{2}$ Hours] [Total Marks: 75

N.B.: (1) All questions are compulsory.

(2) Figures to the right indicate marks for respective subquestions.

1. (a) Answer any **ONE**

- i. Let V be a finite dimensional inner product space over \mathbb{R} and $T:V\to V$ (8) be a linear transformation. Prove that the following statements are equivalent.
 - p. T is orthogonal.
 - q. ||T(X)|| = ||X|| for all $X \in V$.
- ii. State and prove the first isomorphism theorem for vector space.

(b) Answer any **TWO**

- i. Let V be a vector space of finite dimension and W be a subspace of V. Prove that dim $V/W = \dim V \dim W$.
- ii. Let W be an n dimensional inner product space and let W be a n-1 dimensional subspace of V. Let u be a unit vector orthogonal to W. Show that $T:V\to V$ defined by $T(x)=x-2\langle x,u\rangle u$ is an orthogonal linear transformation such that $T(w)=w, \ \forall w\in W$.
- iii. State the Cayley-Hamilton theorem. Using the theorem find $A^5 2A^4 (6)$ $A^3 + 2A^2 + A I, \text{ where } A = \begin{pmatrix} -1 & 2 & 3 \\ 0 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix}.$
- iv. Let $\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\alpha((x,y)) = (ax + by + e, cx + dy + f)$, where $a, b, c, d, e, f \in \mathbb{R}$. Show that α is an isometry if and only if $a^2 + c^2 = 1, b^2 + d^2 = 1, ab + cd = 0$.

2. (a) Answer any **ONE**

- i. Show that every $n \times n$ real matrix with n eigen values is similar to an upper triangular matrix.
- ii. Let A be $n \times n$ real symmetric matrix. Show that the following statements are equivalent.
 - (p) $\langle AX, X \rangle > 0$ for all non zero $X \in \mathbb{R}^n$.
 - (q) Each eigen values of A is positive.

(b) Answer any **TWO**

i. Define orthogonally diagonalizable matrix. Show that $A_{n\times n}$ is orthogonally diagonalizable if and only is \mathbb{R}^n has an orthonormal basis of eigenvectors of A.

[P.T.O.]

(8)

(6)

(6)

(8)

(8)

(6)

Paper / Subject Code: 24203 / Mathematics: Paper II- Algebra. (Old)

- ii. Show that a quadratic form Q[X] can be reduced to standard form $\sum_{i=1}^{n} \lambda_{i} y_{i}^{2} \text{ by orthogonal change of variable } X = PY, X = [x_{1} \ x_{2} \ \cdots \ x_{n}]^{t},$ $Y = [y_{1} \ y_{2} \ \cdots \ y_{n}]^{t} \text{ and orthogonal matrix } P_{n \times n}.$
- iii. Show that characteristic roots of real symmetric matrix are real. (6)
- iv. Let $A_{n\times n}$ be a non-zero real matrix such that $A^k = 0$ for some $k \in \mathbb{N}$. (6) Show that characteristic polynomial of A is λ^n .

3. (a) Answer any **ONE**

- i. Define a cyclic group. Show that subgroup of a cyclic group is cyclic. (8) Give an example to show that the converse is not true.
- ii. State and prove the Lagrange's theorem. (8)
- (b) Answer any **TWO**
 - i. Show that an infinite cyclic group has only two generators. (6)
 - ii. Prove that if H and K are subgroups of a group G then HK is a subgroup of group G if and only if HK = KH.
 - iii. Let $G = \mathbb{Z}_{20}$. List all the subgroups of G and also list the generators of each subgroup. (6)
 - iv. Show that the groups $(\mathbb{Q}, +)$ and $(\mathbb{Q} \{0\}, \cdot)$ are not isomorphic. (6)

4. Answer any **THREE**

- (a) Let V be a vector space and W be a subspace of V. Show that W+x=W+y for $x,y\in V$ if and only if $y-x\in V$
- (b) If A is a 3×3 orthogonal matrix such that det(A) = 1. Show that 1 is an eigen value of A.
- (c) Let A be a diagonalizable matrix. Show that f(A) is also diagonalizable where f(x) is a polynomial over \mathbb{R} .
- (d) Show that $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ is diagonalizable but $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ is not (5) diagonalizable.
- (e) Show that (\mathbb{Q}^+, \circ) is a group where $a \circ b = ab/7, \forall a, b \in \mathbb{Q}^+$. (5)
- (f) Prove that $f: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ defined by $f(A) = \det A$ is a group homomorphism. Show that f is onto but not one-one.

57373