Paper / Subject Code: 24262 / Mathematics: Graphy Theory

	Dι	iration:[3 Hours]	[Total Marks: 100]
N.B.	 All questions are compulsory. Figures to the right indicate f 	ull marks.	
1. Cho	pose correct alternative in each of t	he following:	2
i.	The total number of edges in a contain p (b) $C(p, 2)$	mplete graph on p vertice $(c) p^2$	es is $ (d) \ p(p-1) $
ii.	If a graph G has 21 edges, 3 vert	\$ 50 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	number of vertices in graph G is (a) 10 (b) 13	(c) 14	(d) 9
iii.	Which of the following is a correct statement? (a) Isomorphic graphs have same degree sequence; (b) Non isomorphic graphs have different degree sequences; (c) Two graphs are isomorphic if and only if they have same degree sequences; (d) Two isomorphic graphs need not have same degree sequence.		
iv.	Value of x , if the degree sequence (a) 8 or 7 (b) 8	8, x, 7, 6, 6, 5, 4, 3, 3, 1, (c) 7	1, 1 is graphical, is (d) None of these
v.	The number of cut vertices of a tr (a) $n-2$ (b) n	ee on $n \ge 3$ vertices which (c) 2	ch is a path is (d) $n-1$
vi.	A spanning tree T of a graph G h (a) $V(T) = V(G)$ and $E(T) \subseteq E(G)$ (b) $V(T) \subseteq V(G)$ and $E(T) \subseteq E(G)$ (c) $V(G) \subseteq V(T)$ and $E(G) \subseteq E(G)$ (d) $V(T) = V(G)$ and $E(G) \subseteq E(G)$	G) (G) (T)	
vii.	$K_{5,5}$ is (a) Hamiltonian but not Eulerian (c) Both Hamiltonian and Eulerian tonian		Eulerian but not Hamiltonian Veither Hamiltonian nor Hamil-
viii.	Of the following graphs, the non - (a) Cycle on n vertices (c) Tree on n vertices		
ix	Q_n is a graph with (a) 2^n vertices (c) Bipartite and Connected	(/	2^{n-1} edges ll of the above.
	If G is a graph on p vertices and G (a) Super graph of G (c) compliment of G	(b) su	G then closure of G , $Cl(G)$ is abgraph of G one of these.
6220			TURN OVER

1

55335

Paper / Subject Code: 24262 / Mathematics: Graphy Theory

2. (a) Attempt any **ONE** question from the following:

- (8)
- i. Show that a nontrivial graph G is bipartite if and only if it contains no odd cycle.
- ii. State and prove Havel Hakimi theorem for degree sequence of a graph G.
- (b) Attempt any **TWO** questions from the following:

(12)

- i. Define Adjacency matrix A of a graph G. Let G be a graph with vertex set $V(G) = \{v_1, v_2,, v_n\}$ and adjacency matrix $A = [a_{ij}]$. Show that the entry $a_{ij}^{(k)}$ in i^{th} row and j^{th} column of A^k is the number of distinct $v_i v_j$ walks of length k in G.
- ii. Let G be a simple graph and $\delta(G) \geq 2$, then show that there exists a cycle of length at least $\delta(G) + 1$ in G.
- iii. If G is simple graph on p vertices and $\delta(G) \geq \frac{p-1}{2}$, then prove that G is a connected graph where $\delta(G)$ denotes the minimum degree of G.
- iv. Show that Dijkstra's algorithm produces the shortest path.
- 3. (a) Attempt any **ONE** question from the following:

(8)

- i. State and prove Cayley's formula for spanning trees.
- ii. Define a spanning tree of a graph G. Show that a graph G is connected if and only if it has a spanning tree.
- (b) Attempt any **TWO** questions from the following:

(12)

- i. Define a cut vertex of a graph G. Show that every nontrivial graph contains at least two vertices which are non-cut vertices.
- ii. Describe the trees produced by Breath First Search (BFS) and Depth First Search (DFS) algorithm for the complete graph K_n where n is positive integer. Justify your answer.
- iii. Let $\tau(G)$ denote the number of spanning trees of a graph G. If $e \in E(G)$ is not a loop, then prove that $\tau(G) = \tau(G e) + \tau(G.e)$.
- iv. Use Huffman coding to encode these symbols with the given frequencies: a: 0.20, b: 0.10, c: 0.15, d: 0.25, e: 0.30. What is average number of bits required to encode a character?
- 4. (a) Attempt any **ONE** question from the following:

(8)

- i. If u and v are non-adjacent vertices in a graph G such that $deg(u) + deg(v) \ge p$. Show that G is Hamiltonian if and only if G + uv is Hamiltonian.
- ii. Prove that a connected graph G contains Eulerian trail if and only if exactly two vertices of G have odd degree. Furthermore, prove that each Eulerian trail of G begins at one of these odd vertices and ends at the other.

TURN OVER

55335

- (b) Attempt any **TWO** questions from the following:
 - i. Define a cube graph Q_k . Show that the cube graph Q_k , $k \geq 2$ is a Hamiltonian graph.

(12)

(20)

- ii. If G is a graph on p vertices with $p \geq 3$ such that $deg(u) + deg(v) \geq p 1$ for every pair of non adjacent vertices u and v in G, then show that G contains a Hamiltonian path.
- iii. A mouse eats his way through a $3 \times 3 \times 3$ cube of cheese by tunneling through all of the $27 \times 1 \times 1$ sub-cubes. If he starts at one corner and always move on to an uneaten sub-cube, can he finish at the centre of the cube?
- iv. If G is Hamiltonian graph then for every nonempty proper subset S of V(G), prove that $\omega(G-S) \leq |S|$. Give an example of a graph which satisfies the above condition but not Hamiltonian.
- 5. Attempt any **FOUR** questions from the following:
 - (a) If G is simple graph with p vertices, q edges and k components, then prove that $q \geq p k$.
 - (b) If G(p,q) is a graph with p vertices and q edges, then prove that $\sum_{v \in v(G)} degv = 2q$. Hence prove that every graph has an even number of odd vertices.
 - (c) Describe Kruskal's algorithm for finding minimum spanning tree in a connected weighted graph.
 - (d) Prove that if G is a connected graph of order $p \geq 3$ and G has a cut edge then G contains a cut vertex. Is the converse true? Justify.
 - (e) Define closure of a graph C(G) and show that a simple graph is Hamiltonian if and only if its closure is Hamiltonian.
 - (f) Define a line graph of a graph G. Show that the line graph a simple graph G is a path if and only if G is a path.

55335