Duration: [2½Hours] [Total Marks: 75]

- N.B. 1) All questions are compulsory.
 - 2) Figures to the right indcate full marks.
- 1. (a) Attempt any **ONE** question:

 \sim (8)

- i. Prove that a graph G(p,q) with $p \geq 2$ is 2-connected if and only if any two vertices are connected by at least two internally disjoint paths.
- ii. If $\pi_k(G)$ denotes the chromatic polynomial of a (p,q) graph G then prove that
 - (a) The coefficient of k^p in $\pi_k(G)$ is 1.
 - (b) The constant term of $\pi_k(G)$ is zero.
 - (c) The terms of $\pi_k(G)$ are alternate in sign.
 - (d) The coefficient of k^{p-1} is -q where q is number of edges of G.
- (e) Attempt any **TWO** questions:

(12)

- i. Define vertex chromatic number of a graph G. If G is a (p,q) graph, then prove that $\chi(G) \geq \frac{p^2}{p^2-2q}$ where $\chi(G)$ denotes the vertex chromatic number of G.
- ii. If G is cubic graph, then show that $\kappa(G) = \kappa'(G)$ where $\kappa(G)$ denote the vertex connectivity and $\kappa'(G)$ denotes the edge connectivity of a graph G.
- iii. State vizing theorem for edge coloring of graph. Show that $\chi'(G) \geq \Delta(G)$ where $\chi'(G)$ denotes edge chromatic number and $\Delta(G)$ denotes the maximum degree of G. Give an example of the graph for which $\chi'(G) = \Delta(G)$.
- iv. If G is a cycle on n vertices then show that $\pi_k(G) = (k-1)^n + (-1)^n(k-1)$.
- 2. (a) Attempt any **ONE** question:

(8)

- i. State and prove Max Flow Min Cut Theorem.
- ii. Show that every planar graph is 5 vertex colorable.
- (b) Attempt any **TWO** questions:

(12)

- i. Let f be a flow in a network N and P be any f-incrementing path then show that there exist a revised flow f' such that $val(f') = val(f) + \epsilon(p)$
- ii. State and prove Euler theorem for planar graph.
- iii. Show that edges in a plane graph G form a cycle in G if and only if the corresponding dual edges form a bond in G^* .
- iv. Show that the complete graph K_5 and complete bipartite graph $K_{3,3}$ are nonplanar.

TURN OVER

3. (a) Attempt any **ONE** question:

- (8)
- i. State and prove Hall's (Marriage) Theorem for a System of Distinct Representatives.
- ii. Derive the recurrence relation for number of ways of dividing a n + 1-sided convex polygon into triangular regions by inserting diagonals that do not intersect in the interior and prove using generating function that the solution to this recurrence relation is a Catalan Number.
- (b) Attempt any **TWO** questions:

(12)

- i. Show that a matching M in G is a maximum matching if and only if G contains no M-augmenting path.
- ii. Let B denotes a forbidden chess board in which a special square * has been identified and let D denote the board obtained from the original board by deleting the row and column containing the special square and E denote the board obtained from the original board where only the special square * is removed from the board, then prove that R(x, B) = xR(x, D) + R(x, E).
- iii. Find the coefficient of x^{16} in $(x^2 + x^3 + x^4 + \dots)^5$. What is the coefficient of x^r ?
- iv. Solve recurrence relation $a_n = 3a_{n-1}$, $(n \ge 1)$ subject to initial condition with $a_0 = 1$ using generating function.

4. Attempt any **THREE** questions:

(15)

- (a) Lel $\pi_k(G)$ denote the chromatic polynomial of the graph G. If G is simple graph then prove that $\pi_k(G) = \pi_k(G e) \pi_k(G \cdot e)$ where e is an edge of G.
- (b) Define k-critical graph. If G is k-critical graph then show that $\delta(G) \geq k-1$, where $\delta(G)$ denotes the minimum degree of G.
- (c) Show that there is at least one face of every polyhedron is bounded by an n-cycle for some n = 3, 4 or 5.
- (d) Prove that for any flow f and any cut (S, \overline{S}) , $val(f) = f^+(S) f^-(S)$.
- (e) Define System of distinct representatives for a family of sets and hence determine the number of distinct system of representatives for the family $A_1 = \{1, 2\}, A_2 = \{2, 3\}, A_3 = \{3, 4\}, A_4 = \{4, 5\}, A_5 = \{5, 1\}$. Generalize your result for n.
- (f) Find the rook polynomial for the following $\{(1,3),(1,4),(2,1),(2,2),(3,3),(4,3),(5,2),(5,5)\}$
