Q. P. Code: 19409

	Duration:[2½Hours] [Total Marks: 75]	25/4
N.B. 1	1	
1. (a)	Attempt any ONE question: i. Show that a nontrivial graph is bipartite if and only if it contains no odd cycle. ii. If $(A^n) = (a_{ij}^n)$ is the n^{th} power of adjacency matrix A of a graph G with $V(G) = \{v_1, v_2, \dots v_n\}$, then prove that 1) a_{ij}^2 , $i \neq j$ is the number of $v_i - v_j$ path of length 2. 2) $a_{ii}^2 = deg(v_i)$ 3) $\frac{1}{6}$ trace of A^3 is the number of triangles in G .	(8)
, ,	 Attempt any TWO questions: i. Define a complement of a graph G. For any graph G with at least 6 vertices, prove that either G or G^c contains a triangle. ii. Explain and write Dijkstra's algorithm to find the shortest path in a graph G. iii. Show that a graph G is disconnected if and only if its vertex set V can be partitioned into two subsets V₁ and V₂ such that there exists no edge in G whose one end vertex is in the subset V₁ and the other in the subset V₂. iv. Show that the number of edges of a simple graph with n vertices and k components cannot exceed (n-k)(n-k+1)/2. 	(12)
2. (a)	 Attempt any ONE question: i. Define a spanning tree of a graph G. Show that a graph is connected if and only if it has a spanning tree. ii. Let G be a (p,q) graph. Prove that following statements are equivalent. a) G is tree. b) G is acyclic and q = p - 1. c) G is connected and q = p - 1. 	(8)
	 Attempt any TWO questions: i. Show that each label spanning tree with n vertices corresponds to a unique vector s = (s₁, s₂,s_{n-2}) where s_i ∈ {1, 2,, n} for i = 1, 2,, n ii. Let T be any tree on k + 1 vertices. If δ(G) ≥ k, then show that G contains a tree isomorphic to T. iii. Use Huffman coding to encode these symbols with the given frequencies: a : 0.08, b : 0.10, c : 0.12, d : 0.15, e : 0.20, f : 0.35. What is average number of bits required to encode a character? iv. Prove that a connected graph G is a tree if and only if every edge of G is a cut edge. 	(12)
N. 67.67 69	[TURN OVER	

Q. P. Code: 19409

3. (a) Attempt any **ONE** question:

- (8)
- i. Prove that a connected graph G contains Eulerian trail if and only if exactly two vertices of G have odd degree.
- ii. If G is a graph on p vertices with $p \geq 3$ such that $deg(u) + deg(v) \geq p$ for every pair of non adjacent vertices u and v in G, then prove that G is Hamiltonian.
- (b) Attempt any **TWO** questions:

- (12)
- i. Define a cube graph. Show that the cube graph Q_k , $k \geq 2$ is a Hamiltonian graph.
- ii. Let G be a connected graph with 2n odd vertices with $n \ge 1$. Show that E(G) can be partitioned into subsets $E_1, E_2, \ldots E_n$ so that $\langle E_i \rangle$ is an open trail for each i.
- iii. If G is Hamiltonian graph then for every nonempty proper subset S of V(G), prove that $\omega(G-S) \leq |S|$. Is converse true? Justify.
- iv. If G is a (p,q) graph with $p \ge 3$ and $q \ge \frac{1}{2}(p-1)(p-2) + 2$, then prove that G is Hamiltonian.
- 4. Attempt any **THREE** questions:

(15)

- (a) If G is a graph of order p and size q, then prove that $\sum_{v \in v(G)} degv = 2q$. Hence prove that every graph has an even number of odd vertices.
- (b) If a graph G contains a u-v walk of length l, then show that G contains a u-v path of length at most l.
- (c) Define minimum spanning tree of a graph. Describe Kruskal's algorithm for finding minimum spanning tree in a connected weighted graph.
- (d) Describe the trees produced by Breath First Search (BFS) and Depth First Search (DFS) algorithm for the wheel graph W_n starting at the vertex of degree n where n is integer with $n \geq 3$.
- (e) Let G be a simple graph with $p \geq 3$. If closure of G is complete, show that G is Hamiltonian.
- (f) Show that the line graph a simple graph G is a path if and only if G is a path.
