$2\frac{1}{2}$  Hours] [Total Marks: 75

- N.B.: (1) All questions are compulsory.
  - (2) Figures to the right indicate marks for respective subquestions.

## 1. (a) Answer any **ONE**

- i. Let V be a finite dimensional inner product space. If  $f: V \to V$  is a function such that (p) f(0) = 0 (q) ||f(X) f(Y)|| = ||X Y||,  $\forall X, Y \in V$ , then show that f is an orthogonal linear transformation.
- ii. State and prove the Cayley-Hamilton theorem. (8)

## (b) Answer any **TWO**

- i. Let W be a subspace of a finite dimension real vector space V. Show that  $\dim V/W = \dim V \dim W$ .
- ii. Show that a  $2 \times 2$  orthogonal matrix with determinant = 1 is a matrix of rotation. (6)
- iii. Find an orthogonal transformation in  $\mathbb{R}^3$  which represents reflection with respect to the plane x y + z = 0.
- iv. If  $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  is a linear transformation such that  $\langle u, v \rangle = 0 \Rightarrow$  (6)  $\langle T(u), T(v) \rangle = 0 \ \forall \ u, v \in \mathbb{R}^2$  then show that  $T = \alpha S$ , where  $\alpha \in \mathbb{R}$  and  $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$  is an orthogonal transformation.

## 2. (a) Answer any **ONE**

- i. Define the minimal polynomial of a square matrix A. Show that -
  - (p) the minimal polynomial of a real matrix A divides every polynomial which annihilates A.
  - (q)  $\lambda$  is a root of the minimal polynomial of A if and only if  $\lambda$  is a characteristic root of A.
- ii. Let A be an  $n \times n$  matrix having n eigenvalues then prove that A is similar to an upper triangular matrix with the n eigen values on the diagonal of the upper triangular matrix. (8)

#### (b) Answer any **TWO**

- i. Let  $A_{n\times n}$  be a real matrix. Show that  $\lambda$  is an eigenvalue of A if and only if  $(\lambda I_n A)$  is singular. Hence or otherwise show that 0 is not an eigen value of an injective linear transformation  $T: \mathbb{R}^n \to \mathbb{R}^n$ .
- ii. Let A and B be  $n \times n$  real matrices. Prove that characteristic polynomial of AB = characteristic polynomial of BA.
- iii. Find the characteristic polynomial and the minimal polynomial of  $\begin{bmatrix} 3 & 1 & 6 \\ 2 & 1 & 0 \\ -1 & 0 & -3 \end{bmatrix}$ . (6)
- iv. Prove that if every non-zero vector of  $\mathbb{R}^n$  is an eigenvector of A, then A is a  $n \times n$  scalar matrix. (6)

[P.T.O.]

(8)

# 3. (a) Answer any **ONE**

- i. Show that an  $n \times n$  matrix A is diagonalizable if and only if sum of dimensions of eigen spaces of A is n.
- ii. Show that characteristic roots of a real symmetric matrix are real. (8)

# (b) Answer any **TWO**

- i. Let A be any  $n \times n$  diagonalizable matrix. Show that
  - (p) For any positive integer k,  $A^k$  is also diagonalizable.
  - (q) f(A) is diagonalizable where f(t) is any polynomial over  $\mathbb{R}$ .
- ii. Show that every quadratic form  $Q(x_1, x_2, \dots x_n)$  over  $\mathbb{R}$  can be reduced to standard form  $\sum_{i=1}^{n} \lambda_i y_i^2$  by an orthogonal change of variables  $X = PY, X = (x_1, x_2, \dots, x_n)^t$ ,  $y = (y_1, y_2, \dots y_n)^t$  and P is an  $n \times n$  orthogonal matrix.
- iii. Let  $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$ . Find a non-singular matrix P such that  $P^{-1}AP$  is a diagonal matrix and hence find  $A^{100}$ .
- iv. Find the rotation of coordinate axes which reduces the conic  $x^2 + 2xy + y^2 2 = 0$  to standard form. Give its equation in the standard form in the rotated system and identify the conic.

# 4. Answer any **THREE**

- (a) Let  $A_{3\times3}$  be an upper triangular matrix whose diagonal entries are 1, 2, 3. If  $A^{-1} = aA^2 + bA + cI$ , then find a, b, c.
- (b) If  $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$  given by  $\alpha(x,y) = (ax + by + e, cx + dy + f)$  for real numbers a, b, c, d, e, f is an isometry, then prove that  $a^2 + c^2 = 1$ ,  $b^2 + d^2 = 1$  and ab + cd = 0.
- (c) Find the eigenvalues and the bases of the corresponding eigen spaces for a  $3 \times 3$  (5) matrix A having all its entries equal to 1.
- (d) Let V be a finite dimensional inner product space over  $\mathbb{R}$  and  $T:V\to V$  be a linear transformation. Define an invariant subspace under T. Prove that for  $\lambda\in\mathbb{R}$ ,
  - (i)  $E_{\lambda} = \{X \in V / T(X) = \lambda X\}$  is a subspace of V.
  - (ii)  $E_{\lambda}$  is an invariant subspace under T.
- (e) Let A and B be positive definite matrices. Show that A + B is also positive definite. Is the converse true? Justify your answer.
- (f) Find the rank and signature of  $\begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{bmatrix}.$  (5)

\*\*\*\*\*\*