[Max Marks:75] Revised Course Duration: 21/2 Hours

- **N.B. 1.** All questions are compulsory.
 - 2. From Question 1,2 and 3, Attempt any one from part(a) and any two from part(b).
 - 3. From Question 4, Attempt any THREE
 - **4.** Figures to the right indicate marks for the respective parts.
- 1 a i Define triple integral of a bounded function $f: Q \to \mathbb{R}$ where $Q = [a_1,b_1] \times 8$ $[a_2, b_2] \times [a_3, b_3]$ is a rectangular box in \mathbb{R}^3 . Further show with usual notations $m(b_1-a_1)(b_2-a_2)(b_3-a_3) \leq \iiint_O f \leq M(b_1-a_1)(b_2-a_2)(b_3-a_3)$
 - ii State and prove Fubini's theorem for a rectangular domain in \mathbb{R}^2
 - b i State the change of variables formula for triple integral, stating clearly the condition under which it is valid. Use it to express the triple integral $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} f(x,y,z) \, dz \, dy \, dx \text{ in spherical co-ordinates } (\rho,\theta,\emptyset).$
 - ii Evaluate $\int_0^1 \int_{\sqrt{x}}^3 e^{y^3} dy dx$ by reversing the order of integration. Sketch the region of integration.
 - Evaluate $\iiint_S y \, dV$ where S is the solid enclosed by the planes z = 0, z = y and the parabolic cylinder $y = 1 x^2$
 - Evaluate $\iint_R \frac{y-4x}{y+4x} dA$ where R is the region bounded by the lines y = 4x, y = 4x + 2, y = 2 4x, y = 5 4x.
- 2 a i Let f be a continuously differentiable scalar field defined on an open set U 8 in \mathbb{R}^n . Suppose C be a closed curve in U, with parameterization $r(t), t \in [a, b]$, then prove that $\oint_C \nabla f \cdot \overline{dr} = 0$
 - ii State and prove Green's Theorem for a rectangle. Further find the area of the region between two concentric circles of radii r_1 and r_2 where $r_1 < r_2$, using Green's theorem.
 - b i F = (P, Q) is a continuously differentiable function defined on a simply 12 connected region D in \mathbb{R}^2 . Show that $\oint_C Pdx + Qdy = 0$ around every closed curve C in D if and only if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \ \forall \ (x, y) \in D$
 - Evaluate $\int_C F$, where $F(x, y, z) = (x, ^2 xy, 1)$ and C is the circle of radius 1, with centre at the origin and lying in the yz, plane, traversed counterclockwise as viewed from the positive x axis.
 - Show that the line integral $\int_{(-1,2)}^{(3,1)} (y^2 + 2xy) dx + (x^2 + 2xy) dy$ is path independent. Further evaluate the line integral.
 - iv Use Green's theorem to find the area of the region $D = \left\{ (x, y) \in \mathbb{R}^2 : x^{\frac{2}{3}} + y^{\frac{2}{3}} \le 4 \right\}$
- 3 a i State and prove Stoke's Theorem for an oriented smooth, simple 8 parameterized surface in \mathbb{R}^3 bounded by a simple, closed curve traversed counter clockwise assuming general form of Green's Theorem.

- ii For the surface $\bar{r}(u,v)$ described by the vector equation $\bar{r}(u,v) = X(u,v)i + Y(u,v)j + Z(u,v)\hat{k}$, $(u,v) \in T$ where X, Y, Z are differentiable on T, define the fundamental vector product $\frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v}$. If C is a smooth curve lying on the surface, $C = \bar{r}(\propto(t))$, $\propto: [a,b] \to T$, then show that $\frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v}$ is normal to C at each point. Further assume S and C satisfies the hypotheses of Stokes' Theorem and f,g have continuous second order partial derivatives. Prove with usual notations that $\int_C (f \nabla f) d\bar{r} = 0$.
- b i Assuming S and V satisfy the conditions of the Divergence Theorem and 12 scalar fields f and g, components of \overline{F} have continuous partial derivatives, \widehat{n} is unit outward normal. Prove
 - p) $|V| = \frac{1}{3} \iint_{S} \bar{r}$. $\hat{n}dS$ where $\bar{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and |V| = volume of V.
 - q) $\iint_{S} curl F \cdot \hat{n} dS = 0$.
 - Using Stoke's theorem evaluate $\iint_S curl \, \overline{F} \cdot \hat{n} \, dS$ where $F(x, y, z) = x \, \hat{i} + z^2 \, \hat{j} + y^2 \, \hat{k}$ and S is the plane surface x + y + z = 1 lying in the first octant.
 - iii Evaluate $\iint_S y ds$, where S is cylinder $x^2 + y^2 = 1, 0 \le z \le 1$
 - Using Gauss Divergence Theorem to evaluate $\iint_S F \cdot ndS$ where F(x, y, z) = (y x, z y, y x) and S is the cube bounded by the planes $x = \pm 1, y = \pm 1, z = \pm 1$.
- 4 i Using Spherical coordinates find the volume of the solid region bounded 15 by the surface $\rho = \cos \varphi$.
 - ii Find the area of the region R bounded by the curves $y = \sin x$ and $y = \cos x$ for $0 \le x \le \frac{\pi}{4}$.
 - iii A particle starts at the point (-2, 0) moves along the X-axis to (2, 0) and then along the semi circle $y = \sqrt{4 x^2}$ to the starting point. use Green's theorem to find the work done on this particle by the force field F(x, y) = x $\hat{1} + (x^3 + 3xy^2) \hat{1}$
 - Evaluate the line integral of $f(x, y, z) = e^{\sqrt{z}}$, along the path parametrised by $\gamma(t) = (1, 2, t^2), 0 \le t \le 1$
 - Find the surface area of S which is parametrically given by $r(\theta, z) = (a \cos \theta, a \sin \theta, z)$ and $(\theta, z) \in [0, 2\pi] \times [-1, 1]$, a > 0 is constant.
 - Using Stoke's theorem evaluate $\oint_C \overline{F} \cdot d\overline{r}$ where $\overline{F}(x, y, z) = (x^3 + y^3) \hat{i} + (x y) \hat{j}$, C is the boundary of the rectangular lamina in the xyplane. Bounded by the lines x = 0, x = 2, y = 2 and y = 5 oriented counter clockwise as viewed from above.