Dura	ition.	2 - nours OLD COOKSE Wax. Warks.	
	1)	All questions are compulsory	
	2)	Figures to the right indicate marks.	
Q.1	(a) (i) (ii)	Attempt any ONE of the following Let $f: [a, b] \to \mathbb{R}$ be a bounded function. If P,Q are partitions of $[a, b]$ then show that (i) $L(P, f) \le U(P, f)$ (i) $L(P, f) \le U(Q, f)$. If f is Riemann integrable on $[a,b]$ and $a < c < b$ then show that f is	(8)
		Riemann integrable on [a,c] and [c,b] and further $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$.	
	(b) (i)	Attempt any TWO of the following Prove that if $f:[a,b] \to \Re$ is Riemann integrable then $ f $ is Riemann	(12)
	(ii) (iii)	integrable. Is the converse true? Justify. Using Riemann Criterion, show that $f: [0,3] \to \mathbb{R}$ defined by $f(x) = [x]$ is Riemann integrable on $[0,3]$ where $[x]$ is the integral part of x . Let $f: [0,1] \to \Re$ defined by $f(x) = x^3$. Let $\{P_n\}$ be a sequence of	90
	()	partitions, given by $P_n = \left\{0, \frac{1}{n}, \frac{2}{n},, \frac{n-1}{n}, 1\right\}$. Calculate $U(P_n, f)$, $L(P_n, f)$ and show that $\lim_{n \to \infty} U(P_n, f) = \lim_{n \to \infty} L(P_n, f)$ and hence find $\int_0^1 f(x) dx$.	
	(iv)	$n \to \infty$ $n \to \infty$ Express the following sum as a Riemann sum of a suitable function and evaluate $\lim_{n \to \infty} \sum_{k=0}^{n-1} \frac{1}{\sqrt{n^2-k^2}}$	
Q.2	(a) (i)	Attempt any ONE of the following Define triple integral of a bounded function $f: Q \to \mathbb{R}$ where $Q = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ is a rectangular box in \mathbb{R}^3 . Further show that $m(b_1 - a_1)(b_2 - a_2)(b_3 - a_3) \le \iiint_Q f \le M(b_1 - a_1)(b_2 - a_2)(b_3 - a_3)$ where m , M are the infimum and the supremum of f on Q . Also evaluate $\int_0^1 \int_0^{2z} \int_0^{z+2} yz dx dy dz$. State & prove Fubini's theorem for a rectangular domain in \Re^2 .	(8)
	(b) (i)	Attempt any TWO of the following Use suitable change of variables to show that $\iint_{S} f(xy) dx dy = \log 2 \int_{1}^{2} f(u) du$	(12)
	(ii) (iii) (iv)	where S is the region in the first quadrant bounded by the curve $xy = 1$, $xy = 2$, $y = x \& y = 4x$. Find the area enclosed by one loop of four leaved rose $r = cos2\theta$. Find the volume of the cylinder with base as the disc of unit radius in the xy -plane centred at $(1,1,0)$ and the top being the surface $z = [(x-1)^2 + (y-1)^2]^{3/2}$	
		Evaluate $\iint_{S} (x+y+z)dxdydz$ where S is the parallelepiped bounded by the	

Q.3 (a) Attempt any ONE of the following

(8)

(i) Let $\{f_n\}$ be a sequence of continuous real valued functions defined on a non-empty subset S of $\mathbb R$.If $\{f_n\}$ converges uniformly to a function f on S then show that f is continuous on S. Further show that

 $\lim_{n\to\infty}\lim_{x\to p}f_n(\mathbf{x})=\lim_{x\to p}\lim_{n\to\infty}f_n(\mathbf{x}) \text{ for each } \mathbf{p}\in \mathbf{S}$

(ii) Let $\{f_n\}$ be a sequence of Riemann integrable function on [a,b]. If the series $\sum_{n=1}^{\infty} f_n \text{ converges uniformly to } f \text{ on } [a,b] \text{ then show that } f \text{ is Riemann}$

integrable on [a, b] and $\int_{a}^{b} \left(\sum_{n=1}^{\infty} f_{n} \right) dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} f_{n}(x) dx \right)$

(b) Attempt any TWO of the following

(12)

- Show that the sequence $f_n(x) = \frac{x}{n}e^{-x/n}$ does not converge uniformly on $[0, \infty]$ but converge uniformly on [0, a] where a > 0.
- (ii) Show that the series $\sum_{n=0}^{\infty} \frac{(-1)^n n + x^n}{n^2}$ converges uniformly on [-1, 1].
- (iii) Examine whether $\int_{0}^{1} \sum_{n=1}^{\infty} \left[\frac{nx}{1+n^{2}x^{2}} \frac{(n-1)x}{1+(n-1)^{2}x^{2}} \right] dx =$ $\sum_{n=1}^{\infty} \int_{0}^{1} \left[\frac{nx}{1+n^{2}x^{2}} \frac{(n-1)x}{1+(n-1)^{2}x^{2}} \right] dx \text{ . Is the series } \sum_{n=1}^{\infty} \left[\frac{nx}{1+n^{2}x^{2}} \frac{(n-1)x}{1+(n-1)^{2}x^{2}} \right] dx$

uniformly convergent on [0,1]? Justify.

(iv) If a real power series $\sum_{n=0}^{\infty} a_n x^n$ has the radius of convergence r, then show that it converges uniformly in [-s,s] where $0 \le s < r$. Further show that if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ in (-r,r), then f is differentiable and $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$.

Q.4 Attempt any THREE of the following

(15)

- (i) If a function f defined on [a, b] is continuous and non-negative. If f(c) > 0 for some $c \in [a, b]$. Show that $\int_a^b f(x) dx > 0$.
- (ii) State Riemann's criterion for integrability of a bounded function defined on [a,b] and use it to prove that the function $f(x) = x, x \in [0,1]$ is Riemann integrable.
- (iii) Consider the triple integral $\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} dz dy dx$. Rewrite the integral as an equivalent iterated integrals in five other ways.
- (iv) Find the volume bounded by the cylinders $y^2 = x$, $x^2 = y$ and the planes z = 0, x+y+z=2
- (v) Let $f_n(x) = x^n$ for $x \in [0,1]$. Find $f(x) = \lim_{n \to \infty} f_n(x)$. Show that $\int_0^1 f(x) dx = \lim_{n \to \infty} \int_0^1 f_n(x) dx$ but $\{f_n\}$ does not converge uniformly to f on [0,1].
- (vI) Show that the series $\sum_{n=1}^{\infty} \{\frac{x}{[(n-1)x+1][nx+1]}\}$; $x \in [a,b]$ converge uniformly, where a > 0