(8)

(8)

[Total Marks: 75

 $2 \frac{1}{2}$ Hours]

(Revised Syllabus)

N.B.: (1) All questions are compulsory.

- (2) Figures to the right indicate marks for respective subquestions.
- 1. (a) Answer any **ONE**
 - i. If $T: \mathbb{R}^n \to \mathbb{R}^n$ is such that (8)
 - (i) T(0) = 0.
 - (ii) ||T(x) T(y)|| = ||x y||, for all $x, y \in \mathbb{R}^n$.

then, show that T is an orthogonal linear transformation.

- ii. State and prove the Cayley Hamilton theorem.
- (b) Answer any **TWO**
 - i. Show that any orthogonal linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is either a (6)rotation about origin or a reflection about a line passing through origin.
 - ii. Let V be a finite dimensional inner product vector space. Let $T: V \to V$ be (6)a linear transformation. Prove that T is orthogonal if and only if ||T(x)|| = $||x||, \forall x \in V.$
 - iii. Show that $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x,y,z) = (\frac{1}{2}x + \frac{\sqrt{3}}{2}z 1, y, \frac{\sqrt{3}}{2}x \frac{1}{2}z + 5)$ (6)is an isometry. Express it as a composition of an orthogonal transformation and a translation map.
 - iv. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$. Find the characteristic polynomial of A and using (6)
 - Cayley-Hamilton theorem find A^{-1}
- 2. (a) Answer any **ONE**
 - i. Show that a real square matrix $A_{n\times n}$ with n real eigen values is similar to (8)an upper triangular matrix.
 - ii. Define minimal polynomial of a square matrix. Show that the minimal polynomial of a real square matrix A divides every polynomial that annihilates $A_{n \times n}$. (Polynomial with real coefficients f(x) annihilates A if f(A) = 0).
 - (b) Answer any **TWO**
 - i. Define eigen value of a real square matrix. Prove that $\lambda \in \mathbb{R}$ is an eigen (6)value of $A_{n\times n}$ if and only if λ is a root the characteristic polynomial.
 - (6)ii. Show that eigen vectors v_1, v_2, \cdots, v_k corresponding to distinct eigen values $\lambda_1, \lambda_2, \cdots, \lambda_k$ respectively of a square matrix A are linearly independent.
 - iii. Let V be a vector space of dimension 3 and $\{v_1, v_2, v_3\}$ be a basis of V. Find (6)eigen values and corresponding eigen spaces of $T:V\to V$ be defined by $T(v_1) = v_1, T(v_2) = v_1 + v_2, T(v_3) = v_1 + v_2 + v_3.$
 - iv. Let $A_{n\times n}$ be a real matrix. if A has n distinct characteristic roots, then (6)prove that the characteristic polynomial of A = the minimal polynomial of

[P.T.O.]

3. (a) Answer any **ONE**

- Q. P. Code: 05716
- i. Show that a matrix is orthogonally diagonalizable if and only if there is an orthonormal basis of \mathbb{R}^n consisting of eigen vectors of A.
- ii. Show that if λ is eigen value of real symmetric matrix A, then $\lambda \in \mathbb{R}$. Also prove that the eigen vectors associated with distinct eigen values of A are orthogonal.
- (b) Answer any **TWO**
 - i. Show that algebraic multiplicity of an eigen value of a square matrix is (6) greater than or equal to its geometric multiplicity.
 - ii. Let $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$. Find a non-singular matrix P such that $P^{-1}AP$ is a (6) diagonal matrix and hence find A^{100} .
 - iii. Let A is diagonalizable matrix such that eigen values of A are
 (p) ± 1 , then show that A is invertible and $A = A^{-1}$.
 - (q) 0 and 1 then show that $A^2 = A$.
 - iv. Show that every quadratic form $Q(x_1, x_2, \dots x_n)$ over \mathbb{R} can be to reduced to standard form $\sum_{i=1}^{n} \lambda_i y_i^2$ by an orthogonal change of variables $X = PY, X = (x_1, x_2, \dots, x_n)^t$, $y = (y_1, y_2, \dots y_n)^t$ and P is an $n \times n$ orthogonal matrix.

4. Answer any **THREE**

- (a) Find an orthogonal transformation in \mathbb{R}^3 which represents reflection with respect to the plane x 2y + z = 0.
- (b) Let $V = M_2(\mathbb{R})$ and $W = \text{Space of } 2 \times 2$ real symmetric matrices. Find a basis of W and the quotient space V/W.
- (c) Let $A_{n \times n}$ be an orthogonal matrix with $\det A = -1$, then show that -1 is an eigen value of A.
- (d) Find the minimal polynomial of the diagonal matrix $A = \{1, -1, 1, -1\}.$ (5)
- (e) Show that $A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, $a, b, d \in \mathbb{R}$ is diagonalizable if and only if b = 0 or $a \neq d$. (5)
- (f) Let $A = \begin{pmatrix} \alpha & -3 \\ 3 & 0 \end{pmatrix}$, $\alpha \in \mathbb{R}$ is a parameter, then show that A is diagonalizable if $-6 < \alpha < 6$.
