(8)

(6)

(6)

 $2 \frac{1}{2}$ Hours]

(Old Syllabus)

[Total Marks: 75]

N.B.: (1) All questions are compulsory.

(2) Figures to the right indicate marks for respective subquestions.

1. (a) Answer any **ONE**

- i. State and prove the first isomorphism theorem of vector space. (8)
- ii. Let V be a finite dimensional inner product space over \mathbb{R} . If $f: V \to V$ is a map such that (i) f(0) = 0 (ii) $||f(x) f(y)|| = ||x y|| \quad \forall x, y \in V$, then show that f is an orthogonal linear transformation.

(b) Answer any **TWO**

- i. Let W be a subspace of vector space V, define V/W. Show that following operations are well defined on V/W for $x, y \in V$ and $\alpha \in \mathbb{R}$. $W+x \oplus W+y=W+(x+y)$ and $\alpha \odot W+x=W+\alpha x$.
- ii. Define orthogonal linear transformation. For finite dimensional inner product space $V, T: V \to V$ is a linear transformation, prove that following statements are equivalent:
 - (p) T is orthogonal,
 - (q) If $\{e_i\}_{i=1}^n$ is an orthonormal basis of V then $\{T(e_i)\}_{i=1}^n$ is also an orthonormal basis of V.
- iii. Show that a 2×2 orthogonal matrix A with det A = -1 is a matrix of reflection about a line passing through origin. (6)
- iv. Let $V = M_2(\mathbb{R})$, $W = \{A \in M_2(\mathbb{R}) : Tr(A) = 0\}$ be a subspace of V. Find bases of W and V/W.

2. (a) Answer any **ONE**

- i. Show that an $n \times n$ real matrix A is diagonalizable if and only if \mathbb{R}^n has a basis consisting of eigen vectors of A.
- ii. Show that every real symmetric matrix of order n is orthogonally diagonalizable. (8)

(b) Answer any **TWO**

- i. Show that the characteristic roots of a real symmetric matrix are real.
- ii. Let $A_{n\times n}$ be a real symmetric matrix. Prove that $AX \cdot Y = X \cdot AY$ for every $X, Y \in \mathbb{R}^n$ regarded as column vectors. Hence or otherwise prove that eigen vectors corresponding to distinct eigen values of a real symmetric matrix are orthogonal.
- iii. Let $A = \begin{pmatrix} 3 & 2 \\ 0 & -1 \end{pmatrix}$. Find a non-singular matrix P s.t. $P^{-1}AP$ is a diagonal matrix and find A^{100} .
- iv. Define positive definite real symmetric matrix. Show that, if $A_{n\times n}$ is a positive definite real symmetric matrix then all the eigen values of A are positive.

[P.T.O]

3. (a) Answer any **ONE**

- i. Let G be a cyclic group of order n generated by a. Prove that a^m generates G if and only if gcd(m,n) = 1.
- ii. State and prove Lagrange's theorem. (8)

(b) Answer any **TWO**

- i. Show that an infinite cyclic group has only two generators. (6)
- ii. Prove that if H and K are subgroups of a group G then HK is a subgroup of group G if and only if HK = KH.
- iii. For a group G, $(ab)^3 = a^3b^3$, $(ab)^4 = a^4b^4$, $(ab)^5 = a^5b^5$ for all $a, b \in G$ then show that G is abelian.
- iv. Let $f: G \to G'$ be a group homomorphism. Prove that : p. f(e) = e', where e, e' are identity elements of G and G' respectively. q. $f(a^{-1}) = (f(a))^{-1}$, $\forall a \in G$. r. $f(a^n) = (f(a))^n$, $\forall n \in \mathbb{N}$.

4. Answer any **THREE**

- (a) Let $A = \begin{pmatrix} 2 & 0 & 0 \\ 4 & -3 & 0 \\ 5 & 2 & 0 \end{pmatrix}$. Using the Cayley-Hamilton theorem, find $A^4 + A^3 5$ (5) $5A^2 + A + 2I_3$.
- (b) Let A be 3×3 orthogonal matrix such that det A = -1. Show that -1 is an eigen value of A.
- (c) Show that an $n \times n$ matrix A having n distinct eigen values is diagonalizable. (5)
- (d) Define rank and signature of the quadratic form Q[X]. Find the rank and signature of $Q[X] = 2x^2 + 2y^2 2xy$. (5)
- (e) Show that the set $\{\overline{5}, \overline{15}, \overline{25}, \overline{35}\}$ under multiplication modulo 40 is a group. (5)
- (f) Show that the group $G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R}, a^2 + b^2 \neq 0 \right\}$ is isomorphic to the group $\mathbb{C} \{0\}$ of non-zero complex numbers under multiplication. (5)
